Small Structures最新文献

筛选
英文 中文
Minute-Scale High-Temperature Synthesis of Polymeric Carbon Nitride Photoanodes 微尺度高温合成聚合物氮化碳光电阴极
Small Structures Pub Date : 2024-06-30 DOI: 10.1002/sstr.202400123
Ayelet Tashakory, Sanjit Mondal, Venugopala Rao Battula, Gabriel Mark, Tirza Shmila, Michael Volokh, Menny Shalom
{"title":"Minute-Scale High-Temperature Synthesis of Polymeric Carbon Nitride Photoanodes","authors":"Ayelet Tashakory, Sanjit Mondal, Venugopala Rao Battula, Gabriel Mark, Tirza Shmila, Michael Volokh, Menny Shalom","doi":"10.1002/sstr.202400123","DOIUrl":"https://doi.org/10.1002/sstr.202400123","url":null,"abstract":"Polymeric carbon nitride (CN) has emerged as a promising photoanodic material in water-splitting photoelectrochemical cells (PEC). However, the current deposition methods of CN layers on substrates usually include a long heating process at 500−550 °C, which might cause sublimation or decomposition of the CN monomers and destruction of the substrate, leading to a nonuniform CN film. Herein, a simple, fast, and scalable energy-economic procedure to synthesize homogenous CN films is introduced. The predesigned CN monomers film is subjected for several minutes to higher temperatures than the standard calcination procedure. The short heating process allows the formation of a uniform CN layer, with excellent contact with the substrate and good activity as a photoanode in PEC. The optimal CN photoanode reaches photocurrent densities of ≈200 μA cm<sup>−2</sup> at 1.23 versus reversible hydrogen electrode in neutral and acidic solutions and 120 μA cm<sup>−2</sup> in a basic solution.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ethanol Vapor-Induced Synthesis of Robust, High-Efficiency Zinc Ion Gel Electrolytes for Flexible Zn-Ion Batteries 乙醇蒸汽诱导合成用于柔性锌-离子电池的稳健高效锌-离子凝胶电解质
Small Structures Pub Date : 2024-06-30 DOI: 10.1002/sstr.202400180
Zihao Zheng, Wanke Cheng, Geyuan Jiang, Xiaona Li, Jinsong Sun, Ying Zhu, Dawei Zhao, Haipeng Yu
{"title":"Ethanol Vapor-Induced Synthesis of Robust, High-Efficiency Zinc Ion Gel Electrolytes for Flexible Zn-Ion Batteries","authors":"Zihao Zheng, Wanke Cheng, Geyuan Jiang, Xiaona Li, Jinsong Sun, Ying Zhu, Dawei Zhao, Haipeng Yu","doi":"10.1002/sstr.202400180","DOIUrl":"https://doi.org/10.1002/sstr.202400180","url":null,"abstract":"The evolution of flexible Zn-ion batteries (FZIBs) significantly hinges on the development of gel electrolytes, characterized by their mechanical properties, ionic conductivity, and environmentally friendly production processes. The prevailing challenge in this domain has been devising a gel electrolyte that encapsulates all these critical attributes effectively for practical application. This study presents a novel zinc ion gel (Zn-gel) electrolyte developed for FZIBs, synthesized via ethanol vapor-induced assembly of cellulose molecules. This innovative process fosters significant hydrogen bonding and ion-complexation with Zn<sup>2+</sup> ions, resulting in a gel with exceptional mechanical strength (0.88 MPa), high ion transference (over 0.7), and impressive ionic conductivity (8.39 mS cm<sup>−1</sup>). The Zn-gel enables a FZIB to achieve a reversible capacity of 207.3 mAh g<sup>−1</sup> and over 93% Coulombic efficiency after 500 cycles, devoid of liquid electrolyte. Highlighting a promising route for high-performance, eco-friendly gel electrolytes, this research advances flexible electronics and portable device applications, demonstrating the profound potential of bio-based polymers in enhancing energy storage technology.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Ab Initio Journey toward the Molecular-Level Understanding and Predictability of Subnanometric Metal Clusters 亚纳米金属团簇的分子级理解和可预测性的 Ab Initio 之旅
Small Structures Pub Date : 2024-06-30 DOI: 10.1002/sstr.202400147
María Pilar de Lara-Castells
{"title":"An Ab Initio Journey toward the Molecular-Level Understanding and Predictability of Subnanometric Metal Clusters","authors":"María Pilar de Lara-Castells","doi":"10.1002/sstr.202400147","DOIUrl":"https://doi.org/10.1002/sstr.202400147","url":null,"abstract":"Current advances in synthesizing and characterizing atomically precise monodisperse metal clusters (AMCs) at the subnanometer scale have opened up new possibilities in quantum materials research. Their quantizied “molecule-like” electronic structure showcases unique stability, and physical and chemical properties differentiate them from larger nanoparticles. When integrated into inorganic materials that interact with the environment and sunlight, AMCs serve to enhance their (photo)catalytic activity and optoelectronic properties. Their tiny size makes AMCs isolated in the gas phase amenable to atom-scale modeling using either density functional theory (DFT) or methods at a high level of <i>ab initio</i> theory, even addressing nonadiabatic (e.g., Jahn–Teller) effects. Surface-supported AMCs can be routinely modeled using DFT, enabling long real-time molecular dynamics simulations. Their optical properties can also be addressed using time-dependent DFT or reduced density matrix (RDM) theory. These theoretical–computational efforts aim to achieve predictability and molecular-level understanding of the stability and properties of AMCs as function of their composition, size, and structural fluxionality in different thermodynamical conditions (temperature and pressure). In this perspective, the potential of <i>ab initio</i> and DFT-based modeling is illustrated through recent studies of unsupported and surface-supported AMCs. Future directions of research are also discussed, including applications and methodological enhancements beyond the state-of-the-art.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating the Exploration of High-Entropy Alloys: Synergistic Effects of Integrating Computational Simulation and Experiments 加速探索高熵合金:计算模拟与实验相结合的协同效应
Small Structures Pub Date : 2024-06-30 DOI: 10.1002/sstr.202400110
Deyu Jiang, Yuhua Li, Liqiang Wang, Lai-Chang Zhang
{"title":"Accelerating the Exploration of High-Entropy Alloys: Synergistic Effects of Integrating Computational Simulation and Experiments","authors":"Deyu Jiang, Yuhua Li, Liqiang Wang, Lai-Chang Zhang","doi":"10.1002/sstr.202400110","DOIUrl":"https://doi.org/10.1002/sstr.202400110","url":null,"abstract":"High-entropy alloys (HEAs) are novel materials composed of multiple elements with nearly equal concentrations and they exhibit exceptional properties such as high strength, ductility, thermal stability, and corrosion resistance. However, the intricate and diverse structures of HEAs pose significant challenges to understanding and predicting their behavior at different length scales. This review summarizes recent advances in computational simulations and experiments of structure-property relationships in HEAs at the nano/micro scales. Various methods such as first-principles calculations, molecular dynamics simulations, phase diagram calculations, and finite element simulations are discussed for revealing atomic/chemical and crystal structures, defect formation and migration, diffusion and phase transition, phase formation and stability, stress-strain distribution, deformation behavior, and thermodynamic properties of HEAs. Emphasis is placed on the synergistic effects of computational simulations and experiments in terms of validation and complementarity to provide insights into the underlying mechanisms and evolutionary rules of HEAs. Additionally, current challenges and future directions for computational and experimental studies of HEAs are identified, including accuracy, efficiency, and scalability of methods, integration of multiscale and multiphysics models, and exploration of practical applications of HEAs.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic Dispersion via High-Entropy Liquid Metal Alloys 通过高熵液态金属合金实现原子分散
Small Structures Pub Date : 2024-06-30 DOI: 10.1002/sstr.202400294
Francois-Marie Allioux, Sahar Nazari, Mohammad B. Ghasemian, Ali Zavabeti, Zengxia Pei, Josh Leverett, Somayeh Rafiezadeh, Amar K. Salih, Curtis P. Irvine, Mahroo Baharfar, Laetitia Bardet, Moonika S. Widjajana, Yuan Chi, Dorna Esrafilzadeh, Ali R. Jalili, Nima Haghdadi, Jianbo Tang, Kevin J. Laws, Cuong Ton-That, Torben Daeneke, Rahman Daiyan, Md Arifur Rahim, Kourosh Kalantar-Zadeh
{"title":"Atomic Dispersion via High-Entropy Liquid Metal Alloys","authors":"Francois-Marie Allioux, Sahar Nazari, Mohammad B. Ghasemian, Ali Zavabeti, Zengxia Pei, Josh Leverett, Somayeh Rafiezadeh, Amar K. Salih, Curtis P. Irvine, Mahroo Baharfar, Laetitia Bardet, Moonika S. Widjajana, Yuan Chi, Dorna Esrafilzadeh, Ali R. Jalili, Nima Haghdadi, Jianbo Tang, Kevin J. Laws, Cuong Ton-That, Torben Daeneke, Rahman Daiyan, Md Arifur Rahim, Kourosh Kalantar-Zadeh","doi":"10.1002/sstr.202400294","DOIUrl":"https://doi.org/10.1002/sstr.202400294","url":null,"abstract":"Gallium-based liquid metal alloys exhibit unconventional and intriguing properties as metallic solvents, demonstrating an exceptional potential to dissolve and reconfigure a vast array of elements within the liquid metal matrix. Leveraging on these distinctive characteristics of gallium-based alloys, the synthesis of high-entropy liquid metal alloys (HELMAs) in low dimensions is reported. The nanoscale HELMAs offer advantages including the solvation of multiple metallic elements at room temperature, while promoting their atomic dispersion at elevated concentrations. Entropy estimations for HELMAs surpass those of high-temperature molten metals, leading to the realization of high-entropy liquid metal systems at room temperature. Through a proof-of-concept hydrogen evolution reaction comparison, the potential of these HELMAs in enhancing the activities of nanocatalysts is demonstrated. In this case, atomic dispersion of Pt is shown in senary GaIn-AuCuPtPd HELMA, contrasting with lower entropy systems in which Pt forms discernible clusters. These presented features can lead to catalytic systems with enhanced and tailored activities.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards the Optimization of Polyurethane Aerogel Properties by Densification: Exploring the Structure–Properties Relationship 通过致密化优化聚氨酯气凝胶性能:探索结构与性能的关系
Small Structures Pub Date : 2024-06-30 DOI: 10.1002/sstr.202400120
Beatriz Merillas, Carlos A. García-González, Tomás Enrique Gómez Álvarez-Arenas, Miguel Ángel Rodríguez-Pérez
{"title":"Towards the Optimization of Polyurethane Aerogel Properties by Densification: Exploring the Structure–Properties Relationship","authors":"Beatriz Merillas, Carlos A. García-González, Tomás Enrique Gómez Álvarez-Arenas, Miguel Ángel Rodríguez-Pérez","doi":"10.1002/sstr.202400120","DOIUrl":"https://doi.org/10.1002/sstr.202400120","url":null,"abstract":"The aerogel performance for industrial uses can be tailored using several chemical and physical strategies. The effects of a controlled densification on polyurethane aerogels are herein studied by analyzing their textural, mechanical, sound, optical, and thermal insulating properties. The produced aerogels are uniaxially compressed to different strains (30%–80%) analyzing the consequent changes in the structures and, therefore, final properties. As expected, their mechanical stiffness can be significantly increased by compression (until 55-fold higher elastic modulus for 80%-strain), while the light transmittance does not noticeably worsen until it is compressed more than 60%. Additionally, the modifications produced in the heat transfer contributions are analyzed, obtaining the optimum balance between density increase and pore size reduction. The minimum thermal conductivity (14.5%-reduction) is obtained by compressing the aerogel to 50%-strain, where the increment in the solid conduction is surpassed by the reduction of the radiative and gas contributions. This strategy avoids tedious chemical modifications in the synthesis procedure to control the final structure of the aerogels, leading to the possibility of carefully adapting their structure and properties through a simple method such as densification. Thus, it allows to obtain aerogels for current and on-demand applications, which is one of the main challenges in the field.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsed Laser-Initiated Dual-Catalytic Interfaces for Directed Electroreduction of Nitrite to Ammonia 定向电还原亚硝酸盐至氨的脉冲激光引发的双催化界面
Small Structures Pub Date : 2024-06-30 DOI: 10.1002/sstr.202400187
Talshyn Begildayeva, Jayaraman Theerthagiri, Vy Thuy Nguyen, Ahreum Min, Hyeyoung Shin, Myong Yong Choi
{"title":"Pulsed Laser-Initiated Dual-Catalytic Interfaces for Directed Electroreduction of Nitrite to Ammonia","authors":"Talshyn Begildayeva, Jayaraman Theerthagiri, Vy Thuy Nguyen, Ahreum Min, Hyeyoung Shin, Myong Yong Choi","doi":"10.1002/sstr.202400187","DOIUrl":"https://doi.org/10.1002/sstr.202400187","url":null,"abstract":"Green and highly selective synthesis of ammonia (NH<sub>3</sub>) via electrochemical reduction reaction of toxic nitrite (NO<sub>2</sub><sup>−</sup>RR) in a neutral electrolyte is a feasible solution for energy and environmental issues. Dual-nature electrocatalysts combining metal and metal-derived materials are crucial for enhancing the selectivity parameter and efficacy of this reaction. Here, Pd-, Pt-, Ru-, and Ir-decorated Co<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (CoPi) composites with a robust metal–support interaction are obtained via the one-pot pulsed laser ablation in liquid method. Among the designed composites, Ir–CoPi affords ≈100% Faradaic efficiency, mass balance, and selectivity toward NH<sub>3</sub> product at sufficiently low potentials. Further, it affords the highest NH<sub>3</sub> yield rate of 19.13 mg h<sup>−1</sup> cm<sup>−2</sup> with 78.1% removal of toxic NO<sub>2</sub><sup>−</sup> with a rate constant <i>k</i><sub>app</sub> = 0.31 m<span>m</span> min<sup>−1</sup> under −1.6 V versus Ag/AgCl. In situ experiments and theoretical investigations reveal the underlying mechanisms responsible for this outstanding performance of Ir–CoPi, which can be accredited to the generation of specific active sites on the Ir component. Insights derived from the evolving intermediate reactive species provide new opportunities for large-scale NH<sub>3</sub> production through electrochemical techniques, density functional theory calculations, and the improvement of the corresponding industrial processes.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategic Atomic Interaction Modification for Highly Durable Inorganic Solid Electrolytes in Advanced All-Solid-State Li-Metal Batteries 在先进的全固态锂金属电池中对高耐久性无机固体电解质进行战略性原子相互作用修饰
Small Structures Pub Date : 2024-06-19 DOI: 10.1002/sstr.202400091
Heebae Kim, Eunbin Jang, Jinil Cho, Seonmi Pyo, Heejun Yun, Jeewon Lee, Byeongyun Min, Juyeon Han, Jeeyoung Yoo, Youn Sang Kim
{"title":"Strategic Atomic Interaction Modification for Highly Durable Inorganic Solid Electrolytes in Advanced All-Solid-State Li-Metal Batteries","authors":"Heebae Kim, Eunbin Jang, Jinil Cho, Seonmi Pyo, Heejun Yun, Jeewon Lee, Byeongyun Min, Juyeon Han, Jeeyoung Yoo, Youn Sang Kim","doi":"10.1002/sstr.202400091","DOIUrl":"https://doi.org/10.1002/sstr.202400091","url":null,"abstract":"All-solid-state Li-metal battery (ASSLB) represents advantageous energy storage system for automotive applications. For ASSLB, inorganic solid electrolyte is essential in determining safety and cycling performance. However, significant challenges persist in practical construction of ASSLB with optimized electrolyte. Specifically, electrolyte's structural instability influencing its electrochemical performance remains critical issue within typical operating temperatures for ASSLB in electric vehicles. Herein, this challenge is fundamentally addressed by substituting trace amount of lithium with cadmium, which lacks crystal field stabilization energy. This strategy of atomic interaction modification has induced electrolyte's structural distortion and electronic alteration by deliberately introducing disorder at local lithium sites. Li symmetric cell with cadmium-substituted antiperovskite solid electrolyte exhibits outstanding critical current density of 11.5 mA cm<sup>−2</sup> (5.75 mAh cm<sup>−2</sup>) and excellent stability for 3000 h at 10.0 mA cm<sup>−2</sup> (5.0 mAh cm<sup>−2</sup>). This study highlights explicit research direction for breakthrough of ASSLB, focusing on understanding how local distortion affects complex inorganic materials.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical Polyimide-Covalent Organic Frameworks Carbon Fiber Structures Enhancing Physical and Electrochemical Properties 增强物理和电化学性能的分层聚酰亚胺-共价有机框架碳纤维结构
Small Structures Pub Date : 2024-06-19 DOI: 10.1002/sstr.202400166
Piers Coia, Bhagya Dharmasiri, David J. Hayne, Ameya Borkar, Carol Hua, Elmer Austria, Behnam Akhavan, Mia Angela Nuñeza Judicpa, Ken Aldren Sumaya Usman, Joselito Razal, Luke C. Henderson
{"title":"Hierarchical Polyimide-Covalent Organic Frameworks Carbon Fiber Structures Enhancing Physical and Electrochemical Properties","authors":"Piers Coia, Bhagya Dharmasiri, David J. Hayne, Ameya Borkar, Carol Hua, Elmer Austria, Behnam Akhavan, Mia Angela Nuñeza Judicpa, Ken Aldren Sumaya Usman, Joselito Razal, Luke C. Henderson","doi":"10.1002/sstr.202400166","DOIUrl":"https://doi.org/10.1002/sstr.202400166","url":null,"abstract":"The multifunctionality of carbon fiber (CF) is being extensively explored. Herein, polyimide covalent organic frameworks (PI-COFs) are grafted bound to CF to enhance their mechanical and electrochemical properties. Here, a range of COF scaffolds are grafted to the surface of CFs via a two-step functionalization. First, melamine is tethered to the fiber surface to provide an anchoring point for the COFs followed by a “graft from” approach to grow three different sized PI-COFs utilizing three differently sized dianhydride, PMDA to form <b>MA-PMDA</b>, NTCDA to form <b>MA-NTCDA,</b> and PTCDA to form <b>MA-PTCDA</b> COFs. These COFs increase the capacitance of CF by a maximum of 2.9 F g<sup>−1</sup> (480% increase) for the <b>MA-PTCDA</b>, this coincides with an increase in interfacial shear strength by 67.5% and 52% for <b>MA-NTCDA</b> and <b>MA-PTCDA,</b> respectively. This data represents that the first-time CF has been modified with PI-COFs and allows access to COF properties including their porosity and CO<sub>2</sub> capture ability while being attached to a substrate. This may lead to additional high-value recyclability and second-life applications for CFs.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Unique Edge Reconstructions and Related Edgeless Properties of Mono- and Few-Layered α-Phase Puckered 2D Materials 单层和少层α相皱褶二维材料的独特边缘重构及相关无边特性
Small Structures Pub Date : 2024-06-19 DOI: 10.1002/sstr.202400191
Mingyue Xia, Yuan Chang, Zhigen Yu, Hongsheng Liu, Si Zhou, Jijun Zhao, Junfeng Gao
{"title":"The Unique Edge Reconstructions and Related Edgeless Properties of Mono- and Few-Layered α-Phase Puckered 2D Materials","authors":"Mingyue Xia, Yuan Chang, Zhigen Yu, Hongsheng Liu, Si Zhou, Jijun Zhao, Junfeng Gao","doi":"10.1002/sstr.202400191","DOIUrl":"https://doi.org/10.1002/sstr.202400191","url":null,"abstract":"The edge reconstruction of two-dimensional (2D) materials is significant for the stability, properties, and applications. Significant progress has been made in understanding the edge reconstruction of 2D materials. Herein, an overview of the latest theoretical and experimental advances on edge reconstruction of <i>α</i>-phase phosphorene nanoribbon and IV–VI group binary compounds MX (M = Ge, Sn; X = S, Se), focusing on the mechanism, stability, physical, and chemical properties of the edge reconstructions is provided. The status, challenges, and contradictions in experiments and theory are addressed and the progress in edge reconstruction of <i>α</i>-phase puckered 2D materials as well as the effects of edge reconstruction on physicochemical properties are systematically introduced. A novel tube-like edge reconstruction is suggested to be universal for <i>α</i>-phase puckered monolayers. While ZZ(U) edge can be another important reconstruction in bilayer. Beyond the review, the edge structures of phosphorene have odd–even layered oscillations are also proposed. The edge terminations can affect the exfoliation mechanism and electronic, transport properties. Interesting, unique U-edge, which has been verified by experiment, exhibits nearly edgeless electronic and thermal transport, which is beneficial for ultrafast microelectronics.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信