Baoping Li, Nanyang Li, Aik Han Goh, Haifeng Cao, Min Wang Irwin, Xunian Tong, Jingjing Wang, Xiaojie Wu, Jing Zhang, Dan Pu
{"title":"A Phase I Study to Evaluate the Safety and Pharmacokinetics of SHR0302 Base Ointment in Healthy Adult Volunteers.","authors":"Baoping Li, Nanyang Li, Aik Han Goh, Haifeng Cao, Min Wang Irwin, Xunian Tong, Jingjing Wang, Xiaojie Wu, Jing Zhang, Dan Pu","doi":"10.1159/000528739","DOIUrl":"https://doi.org/10.1159/000528739","url":null,"abstract":"<p><strong>Introduction: </strong>SHR0302 is a highly selective JAK1 inhibitor. This study aimed to investigate the safety, tolerability, and pharmacokinetics of single and multiple-dose topical skin application of SHR0302 base ointment in healthy adult subjects.</p><p><strong>Methods: </strong>This phase I clinical trial (registration number: CTR20192188) consisted of two parts. Part 1 was a single-dose ascending study with four dose levels in 32 healthy Australian adults (8 subjects in each dose group). All Australian subjects were randomized 3:1 to a single-dose topical skin application of SHR0302 base ointment or placebo. The dose escalated from 1% SHR0302 base ointment on 3% of body surface area (BSA) to 2% SHR0302 base ointment on 20% of BSA. Part 2 combined single and multiple-dose ascension studies with two dose levels in 20 healthy Chinese adults (10 subjects in each dose group). All Chinese subjects were randomized 4:1 to a combination of single and multiple doses for consecutive 10 days of topical application of 1% SHR0302 base ointment on 20% BSA or 2% SHR0302 base ointment on 20% BSA. The safety and pharmacokinetics of the SHR0302 base ointment were evaluated.</p><p><strong>Results: </strong>The incidence of treatment-emergent adverse events (TEAEs) in both parts was comparable between the SHR0302 base ointment group and the vehicle group (part 1: 33.3% vs. 37.5%; part 2: 56.3% vs. 75.0%). All TEAEs were transient, recovered, and equally well-tolerated in the two racial groups. The overall absorption of the SHR0302 base ointment was slow after topical application, with Tmax>10 h. After a single dose of the SHR0302 base ointment, drug exposure in healthy Australian and Chinese subjects increased nonlinearly with the increase in the administration area and drug content. Drug exposure increased in a less-than-dose-proportional manner within the dose range tested. Due to differences in the clinical practice of topical application, the Tmax of the drug in Australian subjects was earlier than in Chinese subjects, but the overall extent of absorption seemed comparable in Australian and Chinese subjects (with comparable AUC0-t).</p><p><strong>Conclusion: </strong>The SHR0302 base ointment (either single or multiple doses) was well tolerated and safe, with no racial disparity.</p><p><strong>Key message: </strong>The SHR0302 base ointment (either single or multiples doses) was well tolerated and safe.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"36 2","pages":"76-86"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9532858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Masaki Yoshida, Kyong-Oh Shin, Sora Muraoka, Yerim Choi, Jae-Ho Park, Soo-Hyun Park, Jin-Taek Hwang, Kyungho Park, Yoshikazu Uchida
{"title":"The Epidermal Environment's Influence on the Dermal Environment in Response to External Stress.","authors":"Masaki Yoshida, Kyong-Oh Shin, Sora Muraoka, Yerim Choi, Jae-Ho Park, Soo-Hyun Park, Jin-Taek Hwang, Kyungho Park, Yoshikazu Uchida","doi":"10.1159/000529743","DOIUrl":"https://doi.org/10.1159/000529743","url":null,"abstract":"<p><strong>Introduction: </strong>The outermost layer of the skin, the epidermis, is directly exposed to external stress (e.g., irradiation, allergens, and chemicals). Changes in epidermal conditions/environment in response to this stress could also influence conditions of the dermis, located directly beneath the epidermis. Yet, whether/how any epidermal environment changes in response to external stress affect dermal functions has not been completely clarified.</p><p><strong>Methods: </strong>We employed ultraviolet irradiation B (UVB) (which hardly reaches the dermis) as a model of external stress. Human keratinocytes and human dermal fibroblasts were treated with UVB and conditioned medium of keratinocytes exposed to UVB (UVB-keratinocyte-M), respectively. We assessed (1) inflammatory cytokines and lipid mediators in keratinocytes; (2) matrix metalloprotease (MMP) levels and collagen degradation in fibroblasts; (3) ex vivo organ-cultured human skin was treated with UVB. MMP levels and collagen degradation were examined; (4) test whether the mixture of agent (agent cocktail) consisting of dihydroceramide, niacin amide, resveratrol, glucosyl hesperidin, and phytosterol ester that has been shown to improve skin barrier integrity can mitigate influence of UVB in skin; and (5) a pilot one-arm human clinical test to assess efficacy of formulation containing agent cocktail on stratum corneum hydration, skin elasticity, and wrinkle index.</p><p><strong>Results: </strong>Inflammatory-cytokine and -lipid mediator production were increased in cultured keratinocytes treated with UVB, while matrix MMP-1, -3, and -9 production and collagen degradation were increased in fibroblasts incubated with UVB-keratinocyte-M. mRNA expression of COL1A1 (that codes type 1 collagen) levels was decreased in fibroblasts incubated with UVB-keratinocyte-M. The study using ex vivo organ-cultured human skin showed both MMP-1 and MMP-9 expression were increased in both epidermis and dermis and increased dermal collagen degradation following UVB irradiation. Increased MMP production and collagen degradation were attenuated by application of an agent cocktail. Finally, a pilot clinical study demonstrated that the formulation containing our agent cocktail likely has the ability to improve skin hydration, increase skin elasticity, and reduce the appearance of wrinkles.</p><p><strong>Conclusion: </strong>Epidermal changes in epidermal environment and conditions in response to external stress affect dermal conditions, and these negative effects of external stress on various skin layers can be pharmacologically mitigated.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"36 3","pages":"149-159"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9562425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dill Extract Preserves Dermal Elastic Fiber Network and Functionality: Implication of Elafin.","authors":"Géraldine Aimond, Stéphane Nicolle, Romain Debret, Valérie Oréa, Audrey Josset-Lamaugarny, Jean-François Palierne, Pascal Sommer, Dominique Sigaudo-Roussel, Bérengère Fromy","doi":"10.1159/000534248","DOIUrl":"10.1159/000534248","url":null,"abstract":"<p><strong>Introduction: </strong>Elastic skin fibers lose their mechanical properties during aging due to enzymatic degradation, lack of maturation, or posttranslational modifications. Dill extract has been observed to increase elastin protein expression and maturation in a 3D skin model, to improve mechanical properties of the skin, to increase elastin protein expression in vascular smooth muscle cells, to preserve aortic elastic lamella, and to prevent glycation.</p><p><strong>Objective: </strong>The aim of the study was to highlight dill actions on elastin fibers during aging thanks to elastase digestion model and the underlying mechanism.</p><p><strong>Methods: </strong>In this study, elastic fibers produced by dermal fibroblasts in 2D culture model were injured by elastase, and we observed the action of dill extract on elastic network by elastin immunofluorescence. Then action of dill extract was examined on mice skin by injuring elastin fibers by intradermal injection of elastase. Then elastin fibers were observed by second harmonic generation microscopy, and their functionality was evaluated by oscillatory shear stress tests. In order to understand mechanism by which dill acted on elastin fibers, enzymatic tests and real-time qPCR on cultured fibroblasts were performed.</p><p><strong>Results: </strong>We evidence in vitro that dill extract is able to prevent elastin from elastase digestion. And we confirm in vivo that dill extract treatment prevents elastase digestion, allowing preservation of the cutaneous elastic network in mice and preservation of the cutaneous elastic properties. Although dill extract does not directly inhibit elastase activity, our results show that dill extract treatment increases mRNA expression of the endogenous inhibitor of elastase, elafin.</p><p><strong>Conclusion: </strong>Dill extract can thus be used to counteract the negative effects of elastase on the cutaneous elastic fiber network through modulation of PI3 gene expression.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":"249-258"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41147388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda Rao, Amel A Moussa, Jane Erickson, David Briskey
{"title":"Efficacy of Topical Palmitoylethanolamide (Levagen+) for the Management of Eczema Symptoms: A Double-Blind, Comparator-Controlled, Randomized Clinical Trial.","authors":"Amanda Rao, Amel A Moussa, Jane Erickson, David Briskey","doi":"10.1159/000536670","DOIUrl":"10.1159/000536670","url":null,"abstract":"<p><strong>Introduction: </strong>Eczema is a debilitating skin disorder clinically characterised by the development of itchy, dry, rough, and scaling skin caused by a series of rudimentary clinical phenotypes.</p><p><strong>Methods: </strong>This double-blind, randomised, comparator-controlled trial evaluated the effectiveness of topical application of a novel palmitoylethanolamide formulation (Levagen+) compared with a standard moisturiser (comparator) to reduce eczema severity and improve patient outcomes. Seventy-two participants aged over 18 years old with atopic eczema (symptoms including redness, dry skin, scaling, and/or itchiness) on their hands or arm were recruited. Participants were randomly allocated to one of two treatment groups (Levagen + or comparator). Treatment was applied to the affected area twice daily for 4 weeks. Outcome measures included Self-Assessed Eczema Area Severity Index (SA-EASI) scoring and Patient-Oriented Eczema Measure (POEM) from baseline to week 4.</p><p><strong>Results: </strong>Levagen+ was effective at alleviating symptom severity of eczema over 4 weeks. Levagen+ significantly reduced redness, dryness, and total POEM score compared to a comparator cream.</p><p><strong>Conclusion: </strong>Levagen+ can significantly reduce eczema symptom severity compared to a comparator product, supporting its use as a potential treatment for eczema.</p><p><strong>Trial registration: </strong><ext-link ext-link-type=\"uri\" xlink:href=\"http://clinicaltrials.gov\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">clinicaltrials.gov</ext-link> Identifier: NCT05003453.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":"288-295"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ritamaria Di Lorenzo, Federica Forgione, Antonietta Bernardi, Antonia Sacchi, Sonia Laneri, Giovanni Greco
{"title":"Clinical Studies on Topical Curcumin.","authors":"Ritamaria Di Lorenzo, Federica Forgione, Antonietta Bernardi, Antonia Sacchi, Sonia Laneri, Giovanni Greco","doi":"10.1159/000535100","DOIUrl":"10.1159/000535100","url":null,"abstract":"<p><strong>Background: </strong>Curcumin is a polyphenolic compound present in turmeric (Curcuma longa). Curcumin, turmeric powder, and extracts are widely used in traditional Indian medicine and are active ingredients of dietary supplements and cosmeceutical products. The pharmacological properties of curcumin/turmeric as well as the studies performed in vitro, in animal models, and in volunteers have been the objects of a vast literature. Most of the clinical studies report on the effects of curcumin/turmeric administered orally, while only a few describe its topical applications.</p><p><strong>Summary: </strong>This review focuses on clinical studies in which curcumin/turmeric was applied topically to treat various skin conditions based on its antioxidant, anti-inflammatory, and antimicrobial properties.</p><p><strong>Key messages: </strong>The clinical studies employing curcumin/turmeric as the only active ingredient allow us to appreciate its therapeutic potential without confounding contributions coming from additional pharmacologically active substances present in the same formulation. Curcumin/turmeric was regarded as an attractive alternative to conventional drugs, such as corticosteroids and antibiotics, thanks to its characteristics of a safe and well-tolerated natural substance.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":"235-248"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138441215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeffrey Rajkumar, Neha Chandan, Peter Lio, Vivian Shi
{"title":"The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair.","authors":"Jeffrey Rajkumar, Neha Chandan, Peter Lio, Vivian Shi","doi":"10.1159/000534136","DOIUrl":"10.1159/000534136","url":null,"abstract":"<p><strong>Background: </strong>The anatomic layers of the skin are well-defined, and a functional model of the skin barrier has recently been described. Barrier disruption plays a key role in several skin conditions, and moisturization is recommended as an initial treatment in conditions such as atopic dermatitis. This review aimed to analyze the skin barrier in the context of the function model, with a focus on the mechanisms by which moisturizers support each of the functional layers of the skin barrier to promote homeostasis and repair.</p><p><strong>Summary: </strong>The skin barrier is comprised of four interdependent layers - physical, chemical, microbiologic, and immunologic - which maintain barrier structure and function. Moisturizers target disruption affecting each of these four layers through several mechanisms and were shown to improve transepidermal water loss in several studies. Occlusives, humectants, and emollients occlude the surface of the stratum corneum (SC), draw water from the dermis into the epidermis, and assimilate into the SC, respectively, in order to strengthen the physical skin barrier. Acidic moisturizers bolster the chemical skin barrier by supporting optimal enzymatic function, increasing ceramide production, and facilitating ideal conditions for commensal microorganisms. Regular moisturization may strengthen the immunologic skin barrier by reducing permeability and subsequent allergen penetration and sensitization.</p><p><strong>Key messages: </strong>The physical, chemical, microbiologic, and immunologic layers of the skin barrier are each uniquely impacted in states of skin barrier disruption. Moisturizers target each of the layers of the skin barrier to maintain homeostasis and facilitate repair.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":"174-185"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10338551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Wang, You-Dong Li, Zi-Yan Wang, Jia-Qing Zhao, Guo-Qiang Zhang, Mao-Qiang Man
{"title":"Alterations in Epidermal Biophysical Properties in Autistic Children.","authors":"Bin Wang, You-Dong Li, Zi-Yan Wang, Jia-Qing Zhao, Guo-Qiang Zhang, Mao-Qiang Man","doi":"10.1159/000530140","DOIUrl":"https://doi.org/10.1159/000530140","url":null,"abstract":"<p><p>Autism is a neurodevelopmental disorder. Individuals with autism can exhibit multiple neurological symptoms such as deficit in social communication, restricted interests, and repetitive behaviors. Recent study showed that murine model of autism displays an increased transepidermal water loss (TEWL) and dry skin. But whether epidermal functions are also altered in children with autism is unknown. In the present study, TEWL, stratum corneum hydration, and skin surface pH were compared between children with autism (N = 56) and normal controls (N = 48). Our results showed that children with autism exhibited lower stratum corneum hydration levels, higher TEWL, and elevated skin surface pH in comparison to normal controls (p < 0.0001 for all). These results demonstrate that children with autism exhibit epidermal dysfunction.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"36 3","pages":"160-164"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9913888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tingting Zhu, Shuyun Yang, Theodora M Mauro, Mao-Qiang Man
{"title":"Association of Epidermal Biophysical Properties with Obesity and Its Implications.","authors":"Tingting Zhu, Shuyun Yang, Theodora M Mauro, Mao-Qiang Man","doi":"10.1159/000533587","DOIUrl":"10.1159/000533587","url":null,"abstract":"<p><strong>Background: </strong>Obesity is a condition defined by an excess amount of body fat, with body mass index (BMI) of 30 and higher. It is associated with a number of other medical conditions, including insulin resistance, diabetes mellitus, and cardiovascular diseases, as well as dyslipidemia, and it is also associated with several cutaneous disorders such as atopic dermatitis, psoriasis, intertriginous dermatitis, acanthosis nigricans and skin infections.</p><p><strong>Summary: </strong>Evidence suggests a link between obesity and epidermal dysfunction. Generally, individuals with obesity display higher transepidermal water loss rate and lower stratum corneum hydration levels, although no association of obesity with epidermal dysfunction has been documented. Results of skin surface pH are controversial. But study demonstrated a positive correlation of BMI with skin surface pH on both the forearm and the shin in males, suggesting that the changes in epidermal function vary with gender in individuals with obesity.</p><p><strong>Key messages: </strong>This review summarizes the association between obesity and epidermal function, and discusses possible underlying mechanisms. Individuals with obesity exhibit poor epidermal permeability barrier and lower stratum corneum hydration levels. Because of the pathogenic role of compromised epidermal function in inflammation, which is also linked to obesity, improvement in epidermal function could benefit individuals with obesity, particularly those with abnormalities in epidermal function.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":"165-173"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10110365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human Epidermal Keratinocytes in Culture: A Story of Multiple Recipes for a Single Cell Type.","authors":"Yves Poumay, Emilie Faway","doi":"10.1159/000534137","DOIUrl":"10.1159/000534137","url":null,"abstract":"<p><strong>Background: </strong>For one half-century, cultures of human epidermal keratinocytes have opened new paths of research in skin biology and dermatology. Either performed with serum and feeder layer, in serum-free conditions, or in autocrine conditions, cells cultured as monolayers became research materials for basic science and dermatology, as well as a source for grafting, particularly to treat severely burned patients. More recently, tissue reconstruction at air-liquid interface has opened new perspectives for in vitro toxicology, studies of epidermal barrier, and modeling skin diseases.</p><p><strong>Summary: </strong>This review presents a brief retrospective of the emergence of keratinocyte-based culture techniques. It also presents opportunities and eventual problems that researchers might encounter when exploring the skin using such procedures.</p><p><strong>Key messages: </strong>While methodologies in tissue culture evolve, the multiplicity of procedures concomitantly increases, requiring to make some selective but difficult choice. Keeping tracks of technological evolution in epidermal cell culture should help choosing the adequate methodology for a specific investigation or innovating with new, more dedicated ones.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":"215-224"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10288311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of a Novel Skin Emollient Cream on Skin Lipidome and Lipid Organization.","authors":"Carine Jacques, Caroline Dejean, Christian Klose, Emilie Leccia, Sandrine Bessou-Touya, Alain Delarue, Hélène Duplan","doi":"10.1159/000529253","DOIUrl":"https://doi.org/10.1159/000529253","url":null,"abstract":"<p><strong>Introduction: </strong>The stratum corneum (SC) matrix is composed of free fatty acids, cholesterol, and ceramides (CERs), which play a key role in the skin barrier function. Changes in the composition and content of skin lipids will affect the function of the skin barrier. The effect of a glycerol/petrolatum-based emollient (G/P-emollient) cream on the lipid profiles of isolated ex vivo human SC and the SC of a reconstructed human epidermis (RHE) model was measured.</p><p><strong>Methods: </strong>The spatial organization of the cream and the isolated SC intercellular matrix were studied using X-ray diffraction. The inter-bilayer distances in the multi-lamellar lipid structures and lattice type were analyzed using small-angle X-ray scattering and wide-angle X-ray scattering (WAXS), respectively. Lipidomic analysis using shotgun lipidomics was performed on RHE models to quantify CER classes and chain lengths. This technology enables the analysis of thousands of lipids in a single biological sample.</p><p><strong>Results: </strong>The crystallized components of the cream are lipids, which were mainly packed in orthorhombic lattices, as well as hexagonal lattices and were similar to the SC structure. The cream penetrated the SC but did not alter the WAXS profile. It increased the amount of higher carbon number CERs (>42 carbons) and decreased lower carbon number CERs (<42 carbons). All chain length of CERs and acyl-CER classes (CER EOS, EOH, EOP, EOdS) were increased as the total CER classes. A decrease of the CER C34 for hydroxylated and non-hydroxylated CERs was also observed. The cream altered the S and P CER forms (increased the NP/NS and AP/AS ratios), indicating it could reduce the relative feedback mechanism observed in inflammatory pathologies, for example, atopic dermatitis. The cream increased CER NP, which is decreased in dry skin.</p><p><strong>Conclusion: </strong>G/P-emollient cream may be beneficial for skin pathologies by modifying SC lipids, balancing CER levels and ratios, and improving the barrier function. Importantly, the cream structure mimics that of the SC and penetrated the lower SC layers without compromising its lamellar structure.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"36 3","pages":"125-139"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9556739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}