{"title":"Effects of Intermittent Treatment with Topical Corticosteroids and Calcineurin Inhibitors on Epidermal and Dermal Thickness Using Optical Coherence Tomography and Ultrasound.","authors":"Roland Aschoff, Awena Lang, Edmund Koch","doi":"10.1159/000518214","DOIUrl":"https://doi.org/10.1159/000518214","url":null,"abstract":"<p><strong>Introduction: </strong>Proactive therapy with topical corticosteroids (TCSs) is the standard treatment for chronic inflammatory diseases such as atopic dermatitis; however, skin atrophy as TCS side effect remains a concern.</p><p><strong>Methods: </strong>This 16-week, evaluator-blinded, within-patient placebo-controlled, randomized study enrolled volunteers with healthy skin conditions. For 12 weeks, their volar forearm and the back of their hand were applied with hydrocortisone acetate 1% cream (HC), methylprednisolone aceponate 0.1% cream (MPA), betamethasone valerate 0.1% cream (BMV), or an active agent-free base cream (Dermatop® Basiscreme) once daily twice weekly, and pimecrolimus 1% cream (PIM) twice daily twice weekly. Epidermal and dermal thickness was measured by optical coherence tomography and high-frequency ultrasound, respectively. Furthermore, skin atrophy and telangiectasia were determined by contact dermatoscopic photography (Dermaphot®).</p><p><strong>Results: </strong>After 8 and 12 weeks, only BMV led to significant epidermal thinning on both sites. Four weeks after the end of treatment, epidermal thickness returned to baseline. No dermal thinning, atrophy, or telangiectasia was observed.</p><p><strong>Conclusions: </strong>MPA, HC, and PIM may be more suitable for repeated and prolonged treatment, especially in chronic diseases.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"35 1","pages":"41-50"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000518214","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39274502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arash Samadi, Justin Buro, Xue Dong, Andrew Weinstein, Daniel O Lara, Karel-Bart Celie, Matthew A Wright, Mariam A Gadijko, Uri Galili, Jason A Spector
{"title":"Topical α-Gal Nanoparticles Enhance Wound Healing in Radiated Skin.","authors":"Arash Samadi, Justin Buro, Xue Dong, Andrew Weinstein, Daniel O Lara, Karel-Bart Celie, Matthew A Wright, Mariam A Gadijko, Uri Galili, Jason A Spector","doi":"10.1159/000518015","DOIUrl":"https://doi.org/10.1159/000518015","url":null,"abstract":"<p><strong>Purpose: </strong>Surgery within radiated tissue is associated with increased complication rates. It is hypothesized that impaired wound healing may result from aberrant inflammatory responses that occur in previously radiated tissues. Previous work has demonstrated that the topical application of naturally occurring antigen α-gal (Galα1-3Galβ1-(3)4GlcNAc-R) nanoparticles (AGNs) within wounds accelerates macrophage recruitment and subsequent healing in both normal and diabetic wounds. Herein, we hypothesize that application of this antigen would similarly enhance wound healing in irradiated tissues.</p><p><strong>Methods: </strong>To simulate human physiology, α-1,3-galactosyltransferase knockout (KO) mice were exposed to the antigen to produce anti-α-gal antibodies (anti-Gal). Ten days prior to wounding, the dorsal skin was irradiated with 1 session of 40 Gy. Bilateral dorsal 6-mm splinted full-thickness wounds were created within the radiated skin and treated with 50 µL of AGNs (50 mg/mL) immediately after wounding and again on postoperative day 1. A control KO group underwent similar irradiation and wounding protocols but was treated with phosphate-buffered saline (PBS) vehicle. Wild-type (WT) mice, which do not produce anti-Gal, went through the same irradiation and wounding.</p><p><strong>Results: </strong>Histologic analysis demonstrated enhanced epithelial migration in the radiated/AGN-treated KO wounds, which was significantly elevated in comparison to radiated/PBS-treated KO wounds beginning by day 15 and continuing until the end of the study (p < 0.01). In WT mice, treatment with AGNs showed no effect on epithelial migration.</p><p><strong>Conclusions: </strong>Topical application of AGNs onto irradiated wounds significantly ameliorates the delayed wound healing classically seen in radiated skin and results in faster wound closure with only transient application.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"35 1","pages":"31-40"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000518015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39277075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Borchardt, Andreas Helmke, Jennifer Ernst, Steffen Emmert, Arndt F Schilling, Gunther Felmerer, Wolfgang Viöl
{"title":"Topically Confined Enhancement of Cutaneous Microcirculation by Cold Plasma.","authors":"Thomas Borchardt, Andreas Helmke, Jennifer Ernst, Steffen Emmert, Arndt F Schilling, Gunther Felmerer, Wolfgang Viöl","doi":"10.1159/000527700","DOIUrl":"https://doi.org/10.1159/000527700","url":null,"abstract":"<p><strong>Introduction: </strong>We aim to explore potentials and modalities of cold atmospheric pressure plasma (CAP) for the subsequent development of therapies targeting an increased perfusion of the lower leg skin tissue. In this study, we addressed the question whether the microcirculation enhancement is restricted to the tissue in direct contact with plasma or if adjacent tissue might also benefit.</p><p><strong>Methods: </strong>A dielectric barrier discharge (DBD)-generated CAP device exhibiting an electrode area of 27.5 cm2 was used to treat the anterior lower leg of ten healthy subjects for 4.5 min. Subsequently, hyperspectral imaging was performed to measure the tempospatially resolved characteristics of microcirculation parameters in superficial (up to 1 mm) and deeper (up to 5 mm) skin layers.</p><p><strong>Results: </strong>In the tissue area covered by the plasma electrode, DBD-CAP treatment enhances most of the perfusion parameters. The maximum oxygen saturation increase reached 8%, the near-infrared perfusion index (NIR) increased by a maximum of 4%, and the maximum tissue hemoglobin increase equaled 14%. Tissue water index (TWI) was lower in both the control and the plasma groups, thus not affected by the DBD-CAP treatment. Yet, our study reveals that adjacent tissue is hardly affected by the enhancements in the electrode area, and the effects are locally confined.</p><p><strong>Conclusion: </strong>Application of DBD-CAP to the lower leg resulted in enhancement of cutaneous microcirculation that extended 1 h beyond the treatment period with localization to the tissue area in direct contact with the cold plasma. This suggests the possibility of tailoring application schemes for topically confined enhancement of skin microcirculation, e.g., in the treatment of chronic wounds.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"35 6","pages":"343-353"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10837531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Margarida Florindo, Sérgio Loureiro Nuno, Luis Monteiro Rodrigues
{"title":"Lower Limb Dynamic Activity Significantly Reduces Foot Skin Perfusion: Exploring Data with Different Optical Sensors in Age-Grouped Healthy Adults.","authors":"Margarida Florindo, Sérgio Loureiro Nuno, Luis Monteiro Rodrigues","doi":"10.1159/000517906","DOIUrl":"https://doi.org/10.1159/000517906","url":null,"abstract":"<p><strong>Introduction: </strong>The human lower limb is widely used as a model to study in vivo microcirculatory physiology and pathophysiology. It is a preferential target for critical comorbidities (overweight, diabetes, and peripheral vascular disease). Movement and activity are consistently regarded as beneficial, but the related adaptive physiology is still poorly understood. Our goal was to better identify the foot microcirculatory changes after a regular walking gait activity in healthy subjects of different ages.</p><p><strong>Methods: </strong>Twelve healthy participants of both sexes, with normal BMI and Ankle-Brachial Index, were selected and grouped according to age - group I (21.0 ± 1 y.o.) and group II (55.8 ± 3 y.o.). The protocol involved 2 phases of 5-min duration each - phase 1, a static standing position, and phase 2, 5-min walking with a comfortable pace on a pre-established circuit. Perfusion changes were assessed in the dorsal region of both feet before (baseline, phase 1) and after (phase 2) the gait period by noninvasive optical technologies - laser Doppler flowmetry (LDF), photoplethysmography, and polarized spectroscopy (PSp). Comparative statistics were performed with a 95% confidence level.</p><p><strong>Results: </strong>All instruments detected an asymmetric nonsignificant perfusion between right and left feet during rest in all participants with values in females consistently lower than men. Older participants exhibited lower baseline values than the younger group. Gait evoked a perfusion reduction in all participants relative to phase 1 detected with all technologies, with statistically significant changes recorded with LDF (group I, p = 0.033, and group II, p = 0.028) and PSp (group II, p = 0.041). Furthermore, LDF revealed that gait significantly reduced perfusion velocity in the older group (p = 0.003). Corresponding changes in the younger group were present but discrete. Recovery to baseline levels was also slower in the older group.</p><p><strong>Discussion/conclusions: </strong>Our results confirm that perfusion is age dependent and demonstrate the clinical relevance of simple dynamic activities such as gait. This reduction of the dorsal foot perfusion occurs in depth, being more pronounced with the movement intensity, suggesting a wide application potential in early diagnostics as for rehabilitation.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"35 1","pages":"13-22"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000517906","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39252448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Efficacy and Safety of Chitosan on Facial Skin Sebum.","authors":"Chinathip Theerawattanawit, Punnawich Phaiyarin, Supason Wanichwecharungruang, Nopadon Noppakun, Pravit Asawanonda, Chanat Kumtornrut","doi":"10.1159/000517965","DOIUrl":"https://doi.org/10.1159/000517965","url":null,"abstract":"<p><strong>Introduction: </strong>Seborrhea or oily skin has been one of the most common complaints affecting both men and women physically and psychologically. Chitosan is a biopolymer obtained from the alkaline deacetylation of chitin. Due to its positively charged nature, chitosan can effectively bind to lipids. Therefore, chitosan nanoparticle (CN) formulation may benefit in the reduction of skin sebum.</p><p><strong>Objective: </strong>The aim of this study was to evaluate the efficacy and safety of CN formulation in the reduction of skin sebum.</p><p><strong>Method: </strong>The study was a randomized, double-blinded, placebo-controlled trial in 24 participants aged 18-40 years with clinical seborrhea. Participants were randomly assigned to apply the CN and gum (CN-G) or placebo (gum alone) twice daily for 4 weeks. Sebum level, corneometry, transepidermal water loss (TEWL), and clinical seborrhea grading were evaluated at baseline and week 2 and 4.</p><p><strong>Results: </strong>In the T-zone, sebum levels in the CN-G group were significantly lower than the placebo group at week 4 (p = 0.043), while for the U-zone, sebum levels were not different between groups. There were no statistical differences in corneometry and TEWL at any visit. Although the clinical seborrhea grading in CN-G was lower, it was not significantly different from the placebo. A few cases reported mild and self-limiting scaling and acneiform eruption.</p><p><strong>Conclusion: </strong>The CN-G gel could significantly reduce sebum levels on seborrhea patients with acceptable safety profiles.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"35 1","pages":"23-30"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000517965","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39277076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contents Vol. 34, 2021","authors":"K. Paepe, M. Lane","doi":"10.1159/000520105","DOIUrl":"https://doi.org/10.1159/000520105","url":null,"abstract":"Nihal Ahmad – University of Wisconsin, Madison, WI, USA Christina Antoniou – University of Athens, Athens, Greece Jens Malte Baron – RWTH Aachen University, Aachen, Germany Enzo Berardesca – San Gallicano Dermatological Institute, Rome, Italy Nicole K. Brogden – College of Pharmacy Building, Iowa City, USA Razvigor Darlenski – Trakia University Stara Zagora, Stara Zagora, Bulgaria Kristien De Paepe – Vrije Universiteit Brussel, Brussels, Belgium Sandrine Dubrac – Universitätsklinik für Dermatologie, Venerologie und Allergologie, Innsbruck, Austria Peter Elsner – Friedrich Schiller University, Jena, Germany Arpad Farkas – Hautarztpraxis Glattbrugg, Glattbrugg, Switzerland Natalie Garcia Bartels – Charité – Universitätsmedizin Berlin, Berlin, Germany Richard H. Guy – University of Bath, Bath, UK Gregor B.E. Jemec – Zealand University Hospital, Roskilde, Denmark Helena Kandárová – MatTek Corporation, Ashland, MA, USA Cornelia M. Keck – Philipps-Universität Marburg, Marburg, Germany Joachim Kresken – GD Gesellschaft für Dermopharmazie e.V., Cologne, Germany Jean Krutmann – Heinrich-Heine-Universität, Düsseldorf, Germany Journal of Pharmacological and Biophysical Research","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"34 1","pages":"I - VI"},"PeriodicalIF":2.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47446843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front & Back Matter","authors":"J. Fluhr, M. Lane","doi":"10.1159/000520584","DOIUrl":"https://doi.org/10.1159/000520584","url":null,"abstract":"","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"34 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65298653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acknowledgement to the Reviewers","authors":"","doi":"10.1159/000520104","DOIUrl":"https://doi.org/10.1159/000520104","url":null,"abstract":"<br />Skin Pharmacol Physiol 2021;34:375–376","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"31 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front & Back Matter","authors":"J. Fluhr, B. Lange‐Asschenfeldt, R. Neubert","doi":"10.1159/000518116","DOIUrl":"https://doi.org/10.1159/000518116","url":null,"abstract":"","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49496745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front & Back Matter","authors":"J. Fluhr, B. Lange‐Asschenfeldt, R. Neubert","doi":"10.1159/000516580","DOIUrl":"https://doi.org/10.1159/000516580","url":null,"abstract":"","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44956226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}