Seed Science Research最新文献

筛选
英文 中文
Fruiting traits and seedling regeneration of the relict mangrove plant Nypa fruticans Wurmb in China 中国孑遗红树植物 Nypa fruticans Wurmb 的果实性状和幼苗再生
IF 2.1 3区 生物学
Seed Science Research Pub Date : 2024-12-18 DOI: 10.1017/s0960258524000229
Mengwen Zhang, Cairong Zhong, Erhui Feng, Xiaobo Lv, Zanshan Fang, Cheng Cheng
{"title":"Fruiting traits and seedling regeneration of the relict mangrove plant Nypa fruticans Wurmb in China","authors":"Mengwen Zhang, Cairong Zhong, Erhui Feng, Xiaobo Lv, Zanshan Fang, Cheng Cheng","doi":"10.1017/s0960258524000229","DOIUrl":"https://doi.org/10.1017/s0960258524000229","url":null,"abstract":"<p><span>Nypa fruticans</span> Wurmb is both a relic plant and a true mangrove. In China, wild populations are distributed only on Hainan Island and face significant challenges in regeneration from seedlings. This study explored the underlying causes of recruitment limitation by examining seed morphological traits from three distinct populations (Haikou, Wenchang and Wanning) and analysing seed germination and seedling growth characteristics under varying conditions. The key findings are as follows: fruiting and seed-setting rates for <span>N. fruticans</span> were notably low, standing at only 21 and 40%, respectively. The Wanning population exhibited significantly higher rates compared to the other two populations. Under natural conditions, the germination and seedling emergence rates were also modest, at 36.58 and 22.99%, respectively. The germination and emergence rates of the Wanning population were significantly greater than those of the Haikou and Wenchang populations. Meanwhile, seeds from a single population did not differ in germination rates among three <span>in situ N. fruticans</span> habitats, but seedling emergence rates differed significantly. Optimal conditions for seed germination involved a light intensity of 60%, a salinity of 5‰ and a flooding time of 8 h/day. In natural settings, these three environmental factors fall short of the ideal conditions. The study underscores that light, salinity and flooding are primary factors contributing to the limitations in <span>N. fruticans</span> seedling recruitment. In addition to advocating increased investment in scientific research and technology to address seed source issues, we recommend heightened efforts in habitat restoration, <span>in situ</span> conservation and the optimization of relocation and field return strategies to bolster <span>N. fruticans</span> populations.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"48 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insects and mycorrhizal fungi influence maternal seed provisioning in Senecio vulgaris 昆虫和菌根真菌对庸俗蕨类植物母本种子供应的影响
IF 2.1 3区 生物学
Seed Science Research Pub Date : 2024-12-16 DOI: 10.1017/s0960258524000266
Ruth P. Chitty, Alan C. Gange
{"title":"Insects and mycorrhizal fungi influence maternal seed provisioning in Senecio vulgaris","authors":"Ruth P. Chitty, Alan C. Gange","doi":"10.1017/s0960258524000266","DOIUrl":"https://doi.org/10.1017/s0960258524000266","url":null,"abstract":"<p>The performance of plants in any one generation can be influenced not just by the prevailing biotic and abiotic factors, but also by those factors experienced by the parental generation. These maternal effects have been recorded in an array of plant species, but most studies tend to focus on abiotic factors over two generations. Here we show that maternal effects in the annual forb <span>Senecio vulgaris</span> may be influenced by beneficial arbuscular mycorrhizal fungi and insect herbivory over four successive generations. These effects were very much determined by seed provisioning, wherein C:N:P ratios were altered by both fungi and aphids. There was little evidence of epigenetic changes induced by the fungi or insects, instead the driving forces seemed to be allocation of N and P to the seeds. However, changes in seed chemistry were not cumulative over generations, often decreases in seed nutrient content were followed by recovery in subsequent generations. The changes in seed stoichiometry can have important consequences for viability, germination and subsequent seedling growth rates. We conclude that studies of maternal effects need to be conducted over multiple generations, and also need to be multifactorial, involving variation in abiotic factors such as water and nutrients, combined with biotic factors.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"26 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating seed longevity: use of RNA integrity to characterize variation within species of legume grains 评估种子寿命:利用RNA完整性来表征豆科籽粒物种内的变异
IF 2.1 3区 生物学
Seed Science Research Pub Date : 2024-12-12 DOI: 10.1017/s0960258524000072
Hannah M. Tetreault, Robert J. Redden, Margaret B. Fleming, Lisa Hill, Zoe Zingerman, Katherine Whitehouse, Sally Norton, Christina Walters
{"title":"Evaluating seed longevity: use of RNA integrity to characterize variation within species of legume grains","authors":"Hannah M. Tetreault, Robert J. Redden, Margaret B. Fleming, Lisa Hill, Zoe Zingerman, Katherine Whitehouse, Sally Norton, Christina Walters","doi":"10.1017/s0960258524000072","DOIUrl":"https://doi.org/10.1017/s0960258524000072","url":null,"abstract":"<p>Seed genebanks must maintain collections of healthy seeds and regenerate accessions before seed viability declines. Seed shelf life is often characterized at the species level; however, large, unexplained variation among genetic lines within a species can and does occur. This variation contributes to unreliable predictions of seed quality decline with storage time. To assess variation of seed longevity and aid in timing regeneration, ten varieties of pea (<span>Pisum sativum</span> L.), chickpea (<span>Cicer arietinum</span> L.) and lentil (<span>Lens culinaris</span> Medikus subsp. <span>culinaris</span>) from the Australian Grains Genebank were stored at moderate temperature (20°C) and moisture (7–11% water, relative humidity [RH] ~30%) and deterioration was assessed by yearly germination tests for 20 years. Decline in germination was fit to a sigmoidal model and the time corresponding to 50% germination (P50) was used to express seed longevity for each genetic line. The feasibility of using RNA fragmentation to assess changed seed health was measured using RNA integrity number (RIN) from RNA extracted from seeds that were stored for 13 and 20 years. Seed lots of legume grains that maintained high survival throughout the 20 years (i.e. they aged slower than other lines) had higher RIN than samples that degraded faster. RIN was lower in embryonic axes compared with cotyledons in the more deteriorated samples, perhaps indicating that axes exhibit symptoms of ageing sooner than cotyledons. Overall, RIN appears to be associated with longevity indicators of germination for these legumes and indicating that RIN decline can be used to assess ageing rate, which is needed to optimize viability monitoring.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"21 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prolonged seed submersion influences germination and early seedling growth of Amazonian floodplain trees 种子长时间浸没影响亚马逊河漫滩树木的发芽和幼苗早期生长
IF 2.1 3区 生物学
Seed Science Research Pub Date : 2024-12-10 DOI: 10.1017/s0960258524000138
Josephina B. Veiga, Maria T. F. Piedade, Augusto C. Franco, Gilvan S. Costa, Cristiane S. Ferreira
{"title":"Prolonged seed submersion influences germination and early seedling growth of Amazonian floodplain trees","authors":"Josephina B. Veiga, Maria T. F. Piedade, Augusto C. Franco, Gilvan S. Costa, Cristiane S. Ferreira","doi":"10.1017/s0960258524000138","DOIUrl":"https://doi.org/10.1017/s0960258524000138","url":null,"abstract":"<p>Seeds of many Amazonian floodplain forest trees are dispersed during high-water periods and spend weeks or months underwater until the flooding retreats. To assess whether prolonged seed submersion affects germination and early seedling development, an experiment was carried out in a greenhouse with seeds of <span>Campsiandra laurifolia</span>, <span>Cassia leiandra</span>, <span>Crataeva tapia</span>, <span>Ilex inundata</span>, <span>Macrolobium acaciifolium</span>, <span>Nectandra amazonum</span>, <span>Pouteria glomerata</span>, <span>Psidium acutangulum</span>, <span>Sorocea duckei</span>, and <span>Vitex cymosa</span>. They are common in this type of forest, differ in fruit type, number of seeds per fruit, fruit dimensions, and fresh mass and have fruits or seeds that can float. Seeds were collected in a Central Amazonian floodplain forest (flooded approximately 6 months year<span>−1</span>; water column of 5 m) and germinated in (1) irrigated soil or (2) underwater (water column of 5–7 cm) for 6 months. Seeds that germinated underwater were transferred to drained soil. Seeds of all species germinated underwater and developed seedlings when transferred to soil. However, submersion reduced the germination percentage of <span>Psidium acutangulum</span>, <span>N. amazonum</span>, <span>P. glomerata</span> and <span>V. cymosa</span>. Six species delayed germination in water. <span>Ca. leiandra</span>, <span>I. inundata</span> and <span>P. glomerata</span> did not differ in mean germination time in drained soil and underwater, whereas <span>S. duckei</span> seeds germinated faster underwater. Seed submersion negatively affected seedling growth (shoot length) of three species but did not affect seedling biomass. Timing of fruit dispersal, fruit buoyancy and high number of seeds per fruit can be critical for species with seeds that are not as able to cope with long-term submersion.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"66 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal environmental control of progeny seed physiology: a review of concepts, evidence and mechanism 母体环境对后代种子生理的控制:概念、证据和机制综述
IF 2.1 3区 生物学
Seed Science Research Pub Date : 2024-11-20 DOI: 10.1017/s0960258524000151
William Bezodis, Steven Penfield
{"title":"Maternal environmental control of progeny seed physiology: a review of concepts, evidence and mechanism","authors":"William Bezodis, Steven Penfield","doi":"10.1017/s0960258524000151","DOIUrl":"https://doi.org/10.1017/s0960258524000151","url":null,"abstract":"<p>The environment experienced by a plant before and after reproduction can have a profound effect on the behaviour of the progeny after shedding. Maternal environmental effects on seeds are important for phenology and fitness in plants, especially for bet-hedging reproductive strategies. Maternal tissues that disperse with seeds are important for dormancy in many species, particularly those with coat-imposed dormancy and those that disperse in indehiscent fruits. Maternal nitrogen status, temperature and photoperiod modify maternal tissues and also influence the developing zygote. During seed development on the mother, the progeny may acquire environmental information directly, but there is also evidence for maternal–filial signalling and the epigenetic inheritance of environmental information through the germline.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"14 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dry and warm: a modified open-top chamber for seed ecology research 干燥而温暖:用于种子生态学研究的改良型敞篷室
IF 2.1 3区 生物学
Seed Science Research Pub Date : 2024-10-04 DOI: 10.1017/s096025852400014x
Jerónimo Vázquez-Ramírez, Susanna E. Venn
{"title":"Dry and warm: a modified open-top chamber for seed ecology research","authors":"Jerónimo Vázquez-Ramírez, Susanna E. Venn","doi":"10.1017/s096025852400014x","DOIUrl":"https://doi.org/10.1017/s096025852400014x","url":null,"abstract":"<p>Several experimental tools allow researchers to manipulate environmental variables to simulate future climate change scenarios during <span>in situ</span> seed ecology studies. The most common ones are designed to modify a single environmental variable. For example, open-top chambers (OTCs) increase temperature or rain-out shelters decrease precipitation. However, changes in environmental variables in the future are expected to happen simultaneously, and at present, an understanding of their combined effects in natural environments is limited. Here, we present a passive novel OTC design that simultaneously increases the soil temperature and decreases soil moisture. We assessed the performance of the design during 1 year in a high-mountain environment and reported its effects on the organic and topsoil layers. The modified OTC reduced the soil volumetric water content throughout the study period. Overall, chambers increased the mean day air temperature by 3.3 °C (at 10 cm above the soil surface), the mean day soil surface temperature by 1.35 °C and the mean day below the soil surface temperature by 1.30 °C (at −5 cm) and 1.25 °C (at −10 cm). Remarkably, surface and soil temperatures remained warmer at night (+0.65 at soil surface, +0.41 at −5 cm and +0.24 at −10 cm). We detail the design plans, tools and materials needed for its construction. Furthermore, we recommend on how to use it during seed ecology studies. This tool can help increase our understanding of the potential responses of seeds and seedlings to the combined effects of warming temperatures and a decrease in precipitation.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"51 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full-length transcriptome and co-expression network analysis reveal molecular mechanisms of seed development in Elymus sibiricus 全长转录组和共表达网络分析揭示了西双版纳杓兰种子发育的分子机制
IF 2.1 3区 生物学
Seed Science Research Pub Date : 2024-05-16 DOI: 10.1017/s0960258524000084
Yuying Zheng, Xiaoshan Lin, Wengang Xie, Wenxian Liu
{"title":"Full-length transcriptome and co-expression network analysis reveal molecular mechanisms of seed development in Elymus sibiricus","authors":"Yuying Zheng, Xiaoshan Lin, Wengang Xie, Wenxian Liu","doi":"10.1017/s0960258524000084","DOIUrl":"https://doi.org/10.1017/s0960258524000084","url":null,"abstract":"<p>Grass seeds play a critical and fundamental role in grass breeding and production. <span>Elymus sibiricus</span> L. is a widespread Poaceae forage grass in northern Eurasia which is used for ecological restoration and forage production. Sucrose is the main source of substrate and energy required for starch synthesis in the seeds, so the hydrolysis of sucrose determines and influences starch synthesis and filling in the seeds, especially Poaceae. However, the process behind carbohydrate metabolism during <span>E. sibiricus</span> seed development remains unclear. This study addresses a significant gap in our understanding of the carbohydrate metabolism during seed development in <span>E. sibiricus</span> by employing full-length transcriptome sequencing across five developmental stages for the first time. Full-length transcriptome sequencing was performed on <span>E. sibiricus</span> seeds at five developmental stages (S5, S9, S15, S20, S25) to get better molecular insights. We identified 13,205 differentially expressed genes, with 7,471 up-regulated and 5,734 down-regulated. Through KEGG enrichment analysis, genes were enriched in ‘starch and sucrose metabolism’, ‘photosynthetic-related’ and ‘hormone signal transduction’ pathways. Gene ontology enrichment analysis showed that genes were enriched in the ‘beta-amylase activity’ term of molecular functions. In addition, top 21 transcription factor families were identified as involved in seed development. The homologous genes of <span>ABSCISIC ACID-INSENSITIVE 3</span> (<span>ABI3</span>), <span>NUCLEAR FACTOR-YB1</span> (<span>NF-YB1</span>), <span>STARCH SYNTHASE I</span> (<span>SSI</span>) were identified as candidate genes of seed development in <span>E. sibiricus</span>. Combined with physiological index, transcriptome analyses, weighted gene co-expression network analysis and real-time quantitative PCR, the mechanism of starch and sucrose content of seed development was revealed and ten hub genes were identified. Overall, this study provides the molecular bases to understand seed development and starch and sucrose metabolism at the different seed developmental stages in <span>E. sibiricus</span>.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"129 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140949433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seed permeability: an essential trait for classifying seed dormancy type 种子透气性:种子休眠类型分类的基本特征
IF 2.1 3区 生物学
Seed Science Research Pub Date : 2024-05-09 DOI: 10.1017/s0960258524000059
Lindsay A. McCulloch, James W. Dalling, Paul-Camilo Zalamea
{"title":"Seed permeability: an essential trait for classifying seed dormancy type","authors":"Lindsay A. McCulloch, James W. Dalling, Paul-Camilo Zalamea","doi":"10.1017/s0960258524000059","DOIUrl":"https://doi.org/10.1017/s0960258524000059","url":null,"abstract":"<p>Seed dormancy in plants can have a significant impact on their ecology. Recent work by Rojas-Villa and Quijano-Abril (2023) classified the seed dormancy class in 14 plant species from the Andean forests of Colombia by using germination trials and several microscopy techniques to describe seed anatomy and morphology. The authors conclude that <span>Cecropia</span> species have both physical and physiological dormancy (of which they call physiophysical dormancy) based on seed morphology and mean germination times of over 30 days. Here, we present seed permeability and germination data from neotropical pioneer tree species: <span>Ochroma pyramidale</span>, <span>Cecropia longipes</span>, and <span>Cecropia insignis</span>, as well as <span>Cecropia peltata</span> (present in Rojas-Villa and Quijano-Abril, 2023), to demonstrate that <span>Cecropia</span> species do not exhibit dormancy and also have high levels of seed permeability. We find that the mean germination time for all three <span>Cecropia</span> species in our study was less than 30 days. This suggests a need for reporting the conditions in which germination trials take place to allow for comparability among studies and using seed permeability tests to accurately identify the physical dormancy class of seeds. Further, we present data from the literature that suggests that dormancy is not a requirement for seed persistence in the seed bank.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"18 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic characterization of the different stages of seed germination in Cupressus gigantea 千层塔种子萌发不同阶段的蛋白质组特征分析
IF 2.1 3区 生物学
Seed Science Research Pub Date : 2024-05-03 DOI: 10.1017/s0960258524000126
Jianxin Li, Subin Zhang, Pei Lei, Tong-Ju Eh, Yu Zhang, Guangze Jin, Kun Dong, Qijiang Xu, Qiuxiang Luo, Fanjuan Meng
{"title":"Proteomic characterization of the different stages of seed germination in Cupressus gigantea","authors":"Jianxin Li, Subin Zhang, Pei Lei, Tong-Ju Eh, Yu Zhang, Guangze Jin, Kun Dong, Qijiang Xu, Qiuxiang Luo, Fanjuan Meng","doi":"10.1017/s0960258524000126","DOIUrl":"https://doi.org/10.1017/s0960258524000126","url":null,"abstract":"<p>Seed germination is a pivotal period of plant growth and development. This process can be divided into four major stages, swelling absorption, seed coat dehiscence, radicle emergence and radicle elongation. <span>Cupressus gigantea</span>, a tree native to Tibet, China, is characterized by its resistance to stresses such as cold, and drought, and has a high economic and ecological value. Nevertheless, given its unique geographic location, its seeds are difficult to germinate. Therefore, it is crucial to explore the mechanisms involved in seed germination in this species to improve the germination efficiency of its seeds, thereby protecting this high-quality resource. Here, our findings indicate that seed germination was enhanced when exposed to a 6-h/8-h light/dark photoperiod, coupled with a temperature of 20°C. Furthermore, the application of exogenous GA<span>3</span> (1 mg/ml, about 2.9 mM) stimulated the germination of <span>C. gigantea</span> seeds. Subsequently, proteomics was used to detect changes in protein expression during the four stages of seed germination. We identified 34 differentially expressed proteins (DEPs), including 13 at the radicle pre-emergence stage, and 17 at the radicle elongation stage. These DEPs were classified into eight functional groups, cytoskeletal proteins, energy metabolism, membrane transport, stress response, molecular chaperones, amino acid metabolism, antioxidant system and ABA signalling pathway. Most of them were found to be closely associated with amino acid metabolism. Combined, these findings indicate that, along with temperature and light, exogenous GA<span>3</span> can increase the germination efficiency of <span>C. gigantea</span> seeds. Our study also offers insights into the changes in protein expression patterns in <span>C. gigantea</span> seeds during germination.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"2 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association study on seed dormancy in barley 大麦种子休眠的全基因组关联研究
IF 2.1 3区 生物学
Seed Science Research Pub Date : 2024-04-30 DOI: 10.1017/s0960258524000114
Gaofeng Zhou, Lee-Anne McFawn, Xiao-qi Zhang, Tefera Tolera Angessa, Sharon Westcott, Chengdao Li
{"title":"Genome-wide association study on seed dormancy in barley","authors":"Gaofeng Zhou, Lee-Anne McFawn, Xiao-qi Zhang, Tefera Tolera Angessa, Sharon Westcott, Chengdao Li","doi":"10.1017/s0960258524000114","DOIUrl":"https://doi.org/10.1017/s0960258524000114","url":null,"abstract":"<p>Seed dormancy is an important trait associated with pre-sprouting and malting quality in barley. Genome-wide association studies (GWASs) have been used to detect quantitative trait loci (QTLs) underlying complex traits in major crops. In the present study, we collected 295 barley (<span>Hordeum vulgare</span> L.) accessions from Australia, Europe, Canada and China. A total of 25,179 single nucleotide polymorphism (SNP)/diversity arrays technology sequence markers were used for population structure, linkage disequilibrium and GWAS analysis. Candidate genes within QTL regions were investigated, and their expression levels were analysed using RNAseq data. Five QTLs for seed dormancy were identified. One QTL was mapped on chromosome 1H, and one QTL was mapped on chromosome 4H, while three QTLs were located on chromosome 5H. This is the first report of a QTL on the short arm of chromosome 5H in barley. Molecular markers linked to the QTL can be used for marker-assisted selection in barley breeding programmes.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"19 6 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信