Hannah M. Tetreault, Robert J. Redden, Margaret B. Fleming, Lisa Hill, Zoe Zingerman, Katherine Whitehouse, Sally Norton, Christina Walters
{"title":"评估种子寿命:利用RNA完整性来表征豆科籽粒物种内的变异","authors":"Hannah M. Tetreault, Robert J. Redden, Margaret B. Fleming, Lisa Hill, Zoe Zingerman, Katherine Whitehouse, Sally Norton, Christina Walters","doi":"10.1017/s0960258524000072","DOIUrl":null,"url":null,"abstract":"<p>Seed genebanks must maintain collections of healthy seeds and regenerate accessions before seed viability declines. Seed shelf life is often characterized at the species level; however, large, unexplained variation among genetic lines within a species can and does occur. This variation contributes to unreliable predictions of seed quality decline with storage time. To assess variation of seed longevity and aid in timing regeneration, ten varieties of pea (<span>Pisum sativum</span> L.), chickpea (<span>Cicer arietinum</span> L.) and lentil (<span>Lens culinaris</span> Medikus subsp. <span>culinaris</span>) from the Australian Grains Genebank were stored at moderate temperature (20°C) and moisture (7–11% water, relative humidity [RH] ~30%) and deterioration was assessed by yearly germination tests for 20 years. Decline in germination was fit to a sigmoidal model and the time corresponding to 50% germination (P50) was used to express seed longevity for each genetic line. The feasibility of using RNA fragmentation to assess changed seed health was measured using RNA integrity number (RIN) from RNA extracted from seeds that were stored for 13 and 20 years. Seed lots of legume grains that maintained high survival throughout the 20 years (i.e. they aged slower than other lines) had higher RIN than samples that degraded faster. RIN was lower in embryonic axes compared with cotyledons in the more deteriorated samples, perhaps indicating that axes exhibit symptoms of ageing sooner than cotyledons. Overall, RIN appears to be associated with longevity indicators of germination for these legumes and indicating that RIN decline can be used to assess ageing rate, which is needed to optimize viability monitoring.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"21 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating seed longevity: use of RNA integrity to characterize variation within species of legume grains\",\"authors\":\"Hannah M. Tetreault, Robert J. Redden, Margaret B. Fleming, Lisa Hill, Zoe Zingerman, Katherine Whitehouse, Sally Norton, Christina Walters\",\"doi\":\"10.1017/s0960258524000072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Seed genebanks must maintain collections of healthy seeds and regenerate accessions before seed viability declines. Seed shelf life is often characterized at the species level; however, large, unexplained variation among genetic lines within a species can and does occur. This variation contributes to unreliable predictions of seed quality decline with storage time. To assess variation of seed longevity and aid in timing regeneration, ten varieties of pea (<span>Pisum sativum</span> L.), chickpea (<span>Cicer arietinum</span> L.) and lentil (<span>Lens culinaris</span> Medikus subsp. <span>culinaris</span>) from the Australian Grains Genebank were stored at moderate temperature (20°C) and moisture (7–11% water, relative humidity [RH] ~30%) and deterioration was assessed by yearly germination tests for 20 years. Decline in germination was fit to a sigmoidal model and the time corresponding to 50% germination (P50) was used to express seed longevity for each genetic line. The feasibility of using RNA fragmentation to assess changed seed health was measured using RNA integrity number (RIN) from RNA extracted from seeds that were stored for 13 and 20 years. Seed lots of legume grains that maintained high survival throughout the 20 years (i.e. they aged slower than other lines) had higher RIN than samples that degraded faster. RIN was lower in embryonic axes compared with cotyledons in the more deteriorated samples, perhaps indicating that axes exhibit symptoms of ageing sooner than cotyledons. Overall, RIN appears to be associated with longevity indicators of germination for these legumes and indicating that RIN decline can be used to assess ageing rate, which is needed to optimize viability monitoring.</p>\",\"PeriodicalId\":21711,\"journal\":{\"name\":\"Seed Science Research\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seed Science Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960258524000072\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seed Science Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s0960258524000072","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Evaluating seed longevity: use of RNA integrity to characterize variation within species of legume grains
Seed genebanks must maintain collections of healthy seeds and regenerate accessions before seed viability declines. Seed shelf life is often characterized at the species level; however, large, unexplained variation among genetic lines within a species can and does occur. This variation contributes to unreliable predictions of seed quality decline with storage time. To assess variation of seed longevity and aid in timing regeneration, ten varieties of pea (Pisum sativum L.), chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medikus subsp. culinaris) from the Australian Grains Genebank were stored at moderate temperature (20°C) and moisture (7–11% water, relative humidity [RH] ~30%) and deterioration was assessed by yearly germination tests for 20 years. Decline in germination was fit to a sigmoidal model and the time corresponding to 50% germination (P50) was used to express seed longevity for each genetic line. The feasibility of using RNA fragmentation to assess changed seed health was measured using RNA integrity number (RIN) from RNA extracted from seeds that were stored for 13 and 20 years. Seed lots of legume grains that maintained high survival throughout the 20 years (i.e. they aged slower than other lines) had higher RIN than samples that degraded faster. RIN was lower in embryonic axes compared with cotyledons in the more deteriorated samples, perhaps indicating that axes exhibit symptoms of ageing sooner than cotyledons. Overall, RIN appears to be associated with longevity indicators of germination for these legumes and indicating that RIN decline can be used to assess ageing rate, which is needed to optimize viability monitoring.
期刊介绍:
Seed Science Research, the official journal of the International Society for Seed Science, is a leading international journal featuring high-quality original papers and review articles on the fundamental aspects of seed science, reviewed by internationally distinguished editors. The emphasis is on the physiology, biochemistry, molecular biology and ecology of seeds.