Genome-wide association study on seed dormancy in barley

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gaofeng Zhou, Lee-Anne McFawn, Xiao-qi Zhang, Tefera Tolera Angessa, Sharon Westcott, Chengdao Li
{"title":"Genome-wide association study on seed dormancy in barley","authors":"Gaofeng Zhou, Lee-Anne McFawn, Xiao-qi Zhang, Tefera Tolera Angessa, Sharon Westcott, Chengdao Li","doi":"10.1017/s0960258524000114","DOIUrl":null,"url":null,"abstract":"<p>Seed dormancy is an important trait associated with pre-sprouting and malting quality in barley. Genome-wide association studies (GWASs) have been used to detect quantitative trait loci (QTLs) underlying complex traits in major crops. In the present study, we collected 295 barley (<span>Hordeum vulgare</span> L.) accessions from Australia, Europe, Canada and China. A total of 25,179 single nucleotide polymorphism (SNP)/diversity arrays technology sequence markers were used for population structure, linkage disequilibrium and GWAS analysis. Candidate genes within QTL regions were investigated, and their expression levels were analysed using RNAseq data. Five QTLs for seed dormancy were identified. One QTL was mapped on chromosome 1H, and one QTL was mapped on chromosome 4H, while three QTLs were located on chromosome 5H. This is the first report of a QTL on the short arm of chromosome 5H in barley. Molecular markers linked to the QTL can be used for marker-assisted selection in barley breeding programmes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s0960258524000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Seed dormancy is an important trait associated with pre-sprouting and malting quality in barley. Genome-wide association studies (GWASs) have been used to detect quantitative trait loci (QTLs) underlying complex traits in major crops. In the present study, we collected 295 barley (Hordeum vulgare L.) accessions from Australia, Europe, Canada and China. A total of 25,179 single nucleotide polymorphism (SNP)/diversity arrays technology sequence markers were used for population structure, linkage disequilibrium and GWAS analysis. Candidate genes within QTL regions were investigated, and their expression levels were analysed using RNAseq data. Five QTLs for seed dormancy were identified. One QTL was mapped on chromosome 1H, and one QTL was mapped on chromosome 4H, while three QTLs were located on chromosome 5H. This is the first report of a QTL on the short arm of chromosome 5H in barley. Molecular markers linked to the QTL can be used for marker-assisted selection in barley breeding programmes.

大麦种子休眠的全基因组关联研究
种子休眠是与大麦发芽前和发芽质量相关的一个重要性状。全基因组关联研究(GWAS)已被用于检测主要农作物复杂性状的数量性状位点(QTL)。在本研究中,我们从澳大利亚、欧洲、加拿大和中国收集了 295 个大麦(Hordeum vulgare L.)品种。总共 25,179 个单核苷酸多态性(SNP)/多样性阵列技术序列标记被用于种群结构、连锁不平衡和 GWAS 分析。研究了 QTL 区域内的候选基因,并利用 RNAseq 数据分析了这些基因的表达水平。共鉴定出五个种子休眠 QTL。一个 QTL 位于 1H 染色体上,一个 QTL 位于 4H 染色体上,三个 QTL 位于 5H 染色体上。这是首次报道大麦 5H 染色体短臂上的 QTL。与 QTL 相连的分子标记可用于大麦育种计划中的标记辅助选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信