{"title":"UMLS-KGI-BERT: Data-Centric Knowledge Integration in Transformers for Biomedical Entity Recognition","authors":"Aidan Mannion, D. Schwab, L. Goeuriot","doi":"10.48550/arXiv.2307.11170","DOIUrl":"https://doi.org/10.48550/arXiv.2307.11170","url":null,"abstract":"Pre-trained transformer language models (LMs) have in recent years become the dominant paradigm in applied NLP. These models have achieved state-of-the-art performance on tasks such as information extraction, question answering, sentiment analysis, document classification and many others. In the biomedical domain, significant progress has been made in adapting this paradigm to NLP tasks that require the integration of domain-specific knowledge as well as statistical modelling of language. In particular, research in this area has focused on the question of how best to construct LMs that take into account not only the patterns of token distribution in medical text, but also the wealth of structured information contained in terminology resources such as the UMLS. This work contributes a data-centric paradigm for enriching the language representations of biomedical transformer-encoder LMs by extracting text sequences from the UMLS.This allows for graph-based learning objectives to be combined with masked-language pre-training. Preliminary results from experiments in the extension of pre-trained LMs as well as training from scratch show that this framework improves downstream performance on multiple biomedical and clinical Named Entity Recognition (NER) tasks. All pre-trained models, data processing pipelines and evaluation scripts will be made publicly available.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130819155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yash Mathur, Sanketh Rangreji, Raghav Kapoor, Medha Palavalli, Amanda Bertsch, Matthew R. Gormley
{"title":"SummQA at MEDIQA-Chat 2023: In-Context Learning with GPT-4 for Medical Summarization","authors":"Yash Mathur, Sanketh Rangreji, Raghav Kapoor, Medha Palavalli, Amanda Bertsch, Matthew R. Gormley","doi":"10.48550/arXiv.2306.17384","DOIUrl":"https://doi.org/10.48550/arXiv.2306.17384","url":null,"abstract":"Medical dialogue summarization is challenging due to the unstructured nature of medical conversations, the use of medical terminologyin gold summaries, and the need to identify key information across multiple symptom sets. We present a novel system for the Dialogue2Note Medical Summarization tasks in the MEDIQA 2023 Shared Task. Our approach for sectionwise summarization (Task A) is a two-stage process of selecting semantically similar dialogues and using the top-k similar dialogues as in-context examples for GPT-4. For full-note summarization (Task B), we use a similar solution with k=1. We achieved 3rd place in Task A (2nd among all teams), 4th place in Task B Division Wise Summarization (2nd among all teams), 15th place in Task A Section Header Classification (9th among all teams), and 8th place among all teams in Task B. Our results highlight the effectiveness of few-shot prompting for this task, though we also identify several weaknesses of prompting-based approaches. We compare GPT-4 performance with several finetuned baselines. We find that GPT-4 summaries are more abstractive and shorter. We make our code publicly available.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125094337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"UMASS_BioNLP at MEDIQA-Chat 2023: Can LLMs generate high-quality synthetic note-oriented doctor-patient conversations?","authors":"Junda Wang, Zonghai Yao, Avijit Mitra, Samuel Osebe, Zhichao Yang, Hongfeng Yu","doi":"10.48550/arXiv.2306.16931","DOIUrl":"https://doi.org/10.48550/arXiv.2306.16931","url":null,"abstract":"This paper presents UMASS_BioNLP team participation in the MEDIQA-Chat 2023 shared task for Task-A and Task-C. We focus especially on Task-C and propose a novel LLMs cooperation system named a doctor-patient loop to generate high-quality conversation data sets. The experiment results demonstrate that our approaches yield reasonable performance as evaluated by automatic metrics such as ROUGE, medical concept recall, BLEU, and Self-BLEU. Furthermore, we conducted a comparative analysis between our proposed method and ChatGPT and GPT-4. This analysis also investigates the potential of utilizing cooperation LLMs to generate high-quality datasets.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128656996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DS4DH at MEDIQA-Chat 2023: Leveraging SVM and GPT-3 Prompt Engineering for Medical Dialogue Classification and Summarization","authors":"Boya Zhang, R. Mishra, D. Teodoro","doi":"10.1101/2023.06.08.23291121","DOIUrl":"https://doi.org/10.1101/2023.06.08.23291121","url":null,"abstract":"This paper presents the results of the Data Science for Digital Health (DS4DH) group in the MEDIQA-Chat Tasks at ACL-ClinicalNLP 2023. Our study combines the power of a classical machine learning method, Support Vector Machine, for classifying medical dialogues, along with the implementation of one-shot prompts using GPT-3.5. We employ dialogues and summaries from the same category as prompts to generate summaries for novel dialogues. Our findings exceed the average benchmark score, offering a robust reference for assessing performance in this field.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121592940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giridhar Kaushik Ramachandran, Yujuan Fu, Bin Han, K. Lybarger, Nicholas J. Dobbins, Ozlem Uzuner, M. Yetisgen
{"title":"Prompt-based Extraction of Social Determinants of Health Using Few-shot Learning","authors":"Giridhar Kaushik Ramachandran, Yujuan Fu, Bin Han, K. Lybarger, Nicholas J. Dobbins, Ozlem Uzuner, M. Yetisgen","doi":"10.48550/arXiv.2306.07170","DOIUrl":"https://doi.org/10.48550/arXiv.2306.07170","url":null,"abstract":"Social determinants of health (SDOH) documented in the electronic health record through unstructured text are increasingly being studied to understand how SDOH impacts patient health outcomes. In this work, we utilize the Social History Annotation Corpus (SHAC), a multi-institutional corpus of de-identified social history sections annotated for SDOH, including substance use, employment, and living status information. We explore the automatic extraction of SDOH information with SHAC in both standoff and inline annotation formats using GPT-4 in a one-shot prompting setting. We compare GPT-4 extraction performance with a high-performing supervised approach and perform thorough error analyses. Our prompt-based GPT-4 method achieved an overall 0.652 F1 on the SHAC test set, similar to the 7th best-performing system among all teams in the n2c2 challenge with SHAC.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"189 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116330723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IUTEAM1 at MEDIQA-Chat 2023: Is simple fine tuning effective for multi layer summarization of clinical conversations?","authors":"Dhananjay Srivastava","doi":"10.48550/arXiv.2306.04328","DOIUrl":"https://doi.org/10.48550/arXiv.2306.04328","url":null,"abstract":"Clinical conversation summarization has become an important application of Natural language Processing. In this work, we intend to analyze summarization model ensembling approaches, that can be utilized to improve the overall accuracy of the generated medical report called chart note. The work starts with a single summarization model creating the baseline. Then leads to an ensemble of summarization models trained on a separate section of the chart note. This leads to the final approach of passing the generated results to another summarization model in a multi-layer/stage fashion for better coherency of the generated text. Our results indicate that although an ensemble of models specialized in each section produces better results, the multi-layer/stage approach does not improve accuracy. The code for the above paper is available at https://github.com/dhananjay-srivastava/MEDIQA-Chat-2023-iuteam1.git","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125969588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X. Fontaine, Félix Gaschi, Parisa Rastin, Y. Toussaint
{"title":"Multilingual Clinical NER: Translation or Cross-lingual Transfer?","authors":"X. Fontaine, Félix Gaschi, Parisa Rastin, Y. Toussaint","doi":"10.48550/arXiv.2306.04384","DOIUrl":"https://doi.org/10.48550/arXiv.2306.04384","url":null,"abstract":"Natural language tasks like Named Entity Recognition (NER) in the clinical domain on non-English texts can be very time-consuming and expensive due to the lack of annotated data. Cross-lingual transfer (CLT) is a way to circumvent this issue thanks to the ability of multilingual large language models to be fine-tuned on a specific task in one language and to provide high accuracy for the same task in another language. However, other methods leveraging translation models can be used to perform NER without annotated data in the target language, by either translating the training set or test set. This paper compares cross-lingual transfer with these two alternative methods, to perform clinical NER in French and in German without any training data in those languages. To this end, we release MedNERF a medical NER test set extracted from French drug prescriptions and annotated with the same guidelines as an English dataset. Through extensive experiments on this dataset and on a German medical dataset (Frei and Kramer, 2021), we show that translation-based methods can achieve similar performance to CLT but require more care in their design. And while they can take advantage of monolingual clinical language models, those do not guarantee better results than large general-purpose multilingual models, whether with cross-lingual transfer or translation.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132483899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utterance Classification with Logical Neural Network: Explainable AI for Mental Disorder Diagnosis","authors":"Yeldar Toleubay, Don Joven Agravante, Daiki Kimura, Baihan Lin, Djallel Bouneffouf, Michiaki Tatsubori","doi":"10.48550/arXiv.2306.03902","DOIUrl":"https://doi.org/10.48550/arXiv.2306.03902","url":null,"abstract":"In response to the global challenge of mental health problems, we proposes a Logical Neural Network (LNN) based Neuro-Symbolic AI method for the diagnosis of mental disorders. Due to the lack of effective therapy coverage for mental disorders, there is a need for an AI solution that can assist therapists with the diagnosis. However, current Neural Network models lack explainability and may not be trusted by therapists. The LNN is a Recurrent Neural Network architecture that combines the learning capabilities of neural networks with the reasoning capabilities of classical logic-based AI. The proposed system uses input predicates from clinical interviews to output a mental disorder class, and different predicate pruning techniques are used to achieve scalability and higher scores. In addition, we provide an insight extraction method to aid therapists with their diagnosis. The proposed system addresses the lack of explainability of current Neural Network models and provides a more trustworthy solution for mental disorder diagnosis.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129211796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generating medically-accurate summaries of patient-provider dialogue: A multi-stage approach using large language models","authors":"Varun Nair, Elliot Schumacher, Anitha Kannan","doi":"10.48550/arXiv.2305.05982","DOIUrl":"https://doi.org/10.48550/arXiv.2305.05982","url":null,"abstract":"A medical provider’s summary of a patient visit serves several critical purposes, including clinical decision-making, facilitating hand-offs between providers, and as a reference for the patient. An effective summary is required to be coherent and accurately capture all the medically relevant information in the dialogue, despite the complexity of patient-generated language. Even minor inaccuracies in visit summaries (for example, summarizing “patient does not have a fever” when a fever is present) can be detrimental to the outcome of care for the patient.This paper tackles the problem of medical conversation summarization by discretizing the task into several smaller dialogue-understanding tasks that are sequentially built upon. First, we identify medical entities and their affirmations within the conversation to serve as building blocks. We study dynamically constructing few-shot prompts for tasks by conditioning on relevant patient information and use GPT-3 as the backbone for our experiments. We also develop GPT-derived summarization metrics to measure performance against reference summaries quantitatively. Both our human evaluation study and metrics for medical correctness show that summaries generated using this approach are clinically accurate and outperform the baseline approach of summarizing the dialog in a zero-shot, single-prompt setting.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134024764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangru Tang, Andrew Tran, Jeffrey Tan, Mark B. Gerstein
{"title":"GersteinLab at MEDIQA-Chat 2023: Clinical Note Summarization from Doctor-Patient Conversations through Fine-tuning and In-context Learning","authors":"Xiangru Tang, Andrew Tran, Jeffrey Tan, Mark B. Gerstein","doi":"10.48550/arXiv.2305.05001","DOIUrl":"https://doi.org/10.48550/arXiv.2305.05001","url":null,"abstract":"This paper presents our contribution to the MEDIQA-2023 Dialogue2Note shared task, encompassing both subtask A and subtask B. We approach the task as a dialogue summarization problem and implement two distinct pipelines: (a) a fine-tuning of a pre-trained dialogue summarization model and GPT-3, and (b) few-shot in-context learning (ICL) using a large language model, GPT-4. Both methods achieve excellent results in terms of ROUGE-1 F1, BERTScore F1 (deberta-xlarge-mnli), and BLEURT, with scores of 0.4011, 0.7058, and 0.5421, respectively. Additionally, we predict the associated section headers using RoBERTa and SciBERT based classification models. Our team ranked fourth among all teams, while each team is allowed to submit three runs as part of their submission. We also utilize expert annotations to demonstrate that the notes generated through the ICL GPT-4 are better than all other baselines. The code for our submission is available.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"159 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126818528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}