基于快速提取健康社会决定因素的少次学习方法

Giridhar Kaushik Ramachandran, Yujuan Fu, Bin Han, K. Lybarger, Nicholas J. Dobbins, Ozlem Uzuner, M. Yetisgen
{"title":"基于快速提取健康社会决定因素的少次学习方法","authors":"Giridhar Kaushik Ramachandran, Yujuan Fu, Bin Han, K. Lybarger, Nicholas J. Dobbins, Ozlem Uzuner, M. Yetisgen","doi":"10.48550/arXiv.2306.07170","DOIUrl":null,"url":null,"abstract":"Social determinants of health (SDOH) documented in the electronic health record through unstructured text are increasingly being studied to understand how SDOH impacts patient health outcomes. In this work, we utilize the Social History Annotation Corpus (SHAC), a multi-institutional corpus of de-identified social history sections annotated for SDOH, including substance use, employment, and living status information. We explore the automatic extraction of SDOH information with SHAC in both standoff and inline annotation formats using GPT-4 in a one-shot prompting setting. We compare GPT-4 extraction performance with a high-performing supervised approach and perform thorough error analyses. Our prompt-based GPT-4 method achieved an overall 0.652 F1 on the SHAC test set, similar to the 7th best-performing system among all teams in the n2c2 challenge with SHAC.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prompt-based Extraction of Social Determinants of Health Using Few-shot Learning\",\"authors\":\"Giridhar Kaushik Ramachandran, Yujuan Fu, Bin Han, K. Lybarger, Nicholas J. Dobbins, Ozlem Uzuner, M. Yetisgen\",\"doi\":\"10.48550/arXiv.2306.07170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social determinants of health (SDOH) documented in the electronic health record through unstructured text are increasingly being studied to understand how SDOH impacts patient health outcomes. In this work, we utilize the Social History Annotation Corpus (SHAC), a multi-institutional corpus of de-identified social history sections annotated for SDOH, including substance use, employment, and living status information. We explore the automatic extraction of SDOH information with SHAC in both standoff and inline annotation formats using GPT-4 in a one-shot prompting setting. We compare GPT-4 extraction performance with a high-performing supervised approach and perform thorough error analyses. Our prompt-based GPT-4 method achieved an overall 0.652 F1 on the SHAC test set, similar to the 7th best-performing system among all teams in the n2c2 challenge with SHAC.\",\"PeriodicalId\":216954,\"journal\":{\"name\":\"Clinical Natural Language Processing Workshop\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Natural Language Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.07170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.07170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人们越来越多地研究通过非结构化文本记录在电子健康记录中的健康社会决定因素(SDOH),以了解SDOH如何影响患者的健康结果。在这项工作中,我们利用了社会历史注释语料库(SHAC),这是一个多机构语料库,为SDOH注释了去识别的社会历史部分,包括物质使用、就业和生活状况信息。我们探索了在一次提示设置中使用GPT-4在对峙和内联注释格式下使用SHAC自动提取SDOH信息。我们将GPT-4提取性能与高性能监督方法进行了比较,并进行了彻底的误差分析。我们基于提示的GPT-4方法在SHAC测试集中获得了0.652 F1的总体成绩,类似于在n2c2挑战赛中使用SHAC的所有团队中排名第七的最佳系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prompt-based Extraction of Social Determinants of Health Using Few-shot Learning
Social determinants of health (SDOH) documented in the electronic health record through unstructured text are increasingly being studied to understand how SDOH impacts patient health outcomes. In this work, we utilize the Social History Annotation Corpus (SHAC), a multi-institutional corpus of de-identified social history sections annotated for SDOH, including substance use, employment, and living status information. We explore the automatic extraction of SDOH information with SHAC in both standoff and inline annotation formats using GPT-4 in a one-shot prompting setting. We compare GPT-4 extraction performance with a high-performing supervised approach and perform thorough error analyses. Our prompt-based GPT-4 method achieved an overall 0.652 F1 on the SHAC test set, similar to the 7th best-performing system among all teams in the n2c2 challenge with SHAC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信