DS4DH at MEDIQA-Chat 2023: Leveraging SVM and GPT-3 Prompt Engineering for Medical Dialogue Classification and Summarization

Boya Zhang, R. Mishra, D. Teodoro
{"title":"DS4DH at MEDIQA-Chat 2023: Leveraging SVM and GPT-3 Prompt Engineering for Medical Dialogue Classification and Summarization","authors":"Boya Zhang, R. Mishra, D. Teodoro","doi":"10.1101/2023.06.08.23291121","DOIUrl":null,"url":null,"abstract":"This paper presents the results of the Data Science for Digital Health (DS4DH) group in the MEDIQA-Chat Tasks at ACL-ClinicalNLP 2023. Our study combines the power of a classical machine learning method, Support Vector Machine, for classifying medical dialogues, along with the implementation of one-shot prompts using GPT-3.5. We employ dialogues and summaries from the same category as prompts to generate summaries for novel dialogues. Our findings exceed the average benchmark score, offering a robust reference for assessing performance in this field.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.08.23291121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the results of the Data Science for Digital Health (DS4DH) group in the MEDIQA-Chat Tasks at ACL-ClinicalNLP 2023. Our study combines the power of a classical machine learning method, Support Vector Machine, for classifying medical dialogues, along with the implementation of one-shot prompts using GPT-3.5. We employ dialogues and summaries from the same category as prompts to generate summaries for novel dialogues. Our findings exceed the average benchmark score, offering a robust reference for assessing performance in this field.
DS4DH在MEDIQA-Chat 2023:利用SVM和GPT-3提示工程进行医学对话分类和总结
本文介绍了ACL-ClinicalNLP 2023的MEDIQA-Chat任务中数字健康数据科学(DS4DH)组的结果。我们的研究结合了经典机器学习方法——支持向量机(Support Vector machine)对医学对话进行分类的能力,以及使用GPT-3.5实现的一次性提示。我们使用同一类别的对话和摘要作为提示,为新颖的对话生成摘要。我们的研究结果超过了平均基准分数,为评估该领域的表现提供了有力的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信