Shuai Yuan, Yuemin Yue, Xinbao Zhang, Lu Wang, Lu Zhai, Kelin Wang
{"title":"Human disturbance exacerbated erosion and deposition in the karst peak-cluster depressions during the Ming and Qing dynasties","authors":"Shuai Yuan, Yuemin Yue, Xinbao Zhang, Lu Wang, Lu Zhai, Kelin Wang","doi":"10.1007/s11430-023-1406-y","DOIUrl":"https://doi.org/10.1007/s11430-023-1406-y","url":null,"abstract":"<p>Under the background of large-scale ecological restoration, China’s southwestern karst region has become a hotspot of global vegetation cover “greening” in the past 20 years. However, because of geological constraints, it is difficult to restore the forest landscapes in some areas. It is urgent to understand the impacts of human disturbances during the historical period on the difficult-to-forestation rocky-desertification areas of the karst region in order to guide future afforestation. In this study, we quantified the changes of specific sediment yield in typical karst depressions over the past 500 years by using <sup>137</sup>Cs, <sup>210</sup>Pb, and <sup>14</sup>C dating methods in karst depressions, and identified the main human disturbances related to historical erosion and sedimentation by combining with historical data. The results showed that the erosion and sedimentation of the three depressions in 1921–1963 were significantly higher than that in 1963–2021, and the sedimentation rate (0.64–1.33 cm a<sup>−1</sup>) and the specific sediment yield (2.51–13.11 t ha<sup>−1</sup> a<sup>−1</sup>) during Ming and Qing dynasties (1504–1812) were higher than the sedimentation rate (0.26–0.95 cm a<sup>−1</sup>) and specific sediment yield (0.95–6.99 t ha<sup>−1</sup> a<sup>−1</sup>) in the recent century (1921–2021). Reconstruction data and literature from the Ming and Qing dynasties show an empirical link between changes in population, arable land, food, forest area, and deforestation events during the same period. It was found that the population and arable land in Guangxi increased more than three-fold and the forest area decreased significantly in the 17th century after the migration of the Yao ethnic group and the introduction of maize to the region, which may be the main reason for intensifying the erosion of depressions. This study is of great significance to understanding the evolution history of rocky desertification in this region and to answer the potential of afforestation.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"105 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Pu, Xueqiong Wei, Jianbao Liu, Ke Zhang, Beibei Li, Zhudeng Wei, Mengmeng Zhang, Tong He, Yanjun Wang, Xiaohua Shao
{"title":"Relationship between environmental evolution and human activities in the northeastern Qinghai-Xizang Plateau throughout the past millennium and its implications for the onset of the Anthropocene","authors":"Yang Pu, Xueqiong Wei, Jianbao Liu, Ke Zhang, Beibei Li, Zhudeng Wei, Mengmeng Zhang, Tong He, Yanjun Wang, Xiaohua Shao","doi":"10.1007/s11430-024-1407-x","DOIUrl":"https://doi.org/10.1007/s11430-024-1407-x","url":null,"abstract":"<p>In current research on the Anthropocene, assessing the impact of human activities via stratigraphic records of sediments and demarcating the Anthropocene epoch globally are critical scientific issues that urgently need to be addressed. The northeastern Qinghai-Xizang Plateau (QXP), where humans first settled permanently in large numbers in the QXP, has varying sedimentary environments that are extremely sensitive to human activities. In contrast to other regions of the QXP, the northeastern sector boasts a richer array of climatic and environmental reconstruction sequences. This distinctive feature renders it an exemplary locale for investigating the stratigraphic boundary of the Anthropocene. Through in-depth analysis and integration of existing paleoclimate and paleoenvironment sequences in the northeastern QXP, we draw the following conclusions: (1) Throughout the past millennium, the impact of human activities on the environment of the northeastern QXP has become increasingly significant, especially in the past 200–300 years, gradually overshadowing climatic factors. (2) Since AD 1950, multiple physicochemical indicators related to human activities in the northeastern QXP have shown exponential growth, forming a distinct peak within the past millennium and clearly depicting the global “Great Acceleration” phenomenon and its development process. (3) Intensified human activities have driven swift environmental shifts and “decoupled” the interplay between climatic variations and the ecological environment, propelling the northeastern QXP into the “Early Anthropocene” from the “Late Holocene”. On the basis of the above findings, we construct a model suitable for identifying the stratigraphic boundary of the Anthropocene in the northeastern QXP and note that since the ecological environment in the northeastern QXP has entered the “Early Anthropocene”, the climate signals of certain physicochemical indicators in sediments are gradually becoming weaker, whereas the signals of human activities are becoming stronger.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"64 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongping Wang, Yixin Sun, Qiugang Zong, Gaopeng Lu, Xudong Gu, Ze-Jun Hu, Bin Li
{"title":"First observation results of Macao Science Satellite 1 on lightning-induced electron precipitation","authors":"Yongping Wang, Yixin Sun, Qiugang Zong, Gaopeng Lu, Xudong Gu, Ze-Jun Hu, Bin Li","doi":"10.1007/s11430-024-1411-x","DOIUrl":"https://doi.org/10.1007/s11430-024-1411-x","url":null,"abstract":"<p>The mid-energy electron detector (MEED) is a space-borne instrument onboard Macao Science Satellite 1 (MSS-1) dedicated to monitoring the typical charged particle radiation characteristics in the satellite orbit and the process of their occurrence and development, including short bursts of lightning-induced electron precipitation (LEP). This paper presents the first results of the LEP measurements by the MSS-1. 47 LEP events are identified with the routine operation for 3 months since satellite launch, all within the range of 1.5<<i>L</i><3.0 (where <i>L</i> represents the McIlwain L-parameter), and the causative lightning discharges are definitively geo-located for these LEP events. The LEP events occur within <1 s of the causative lightning and consist of 40–300 keV electrons. A preliminary observation result indicates that, with medium-energy electron detectors, MSS-1 can present in-situ observations of large regions of enhanced background precipitation and reveal their fine spatiotemporal characteristics and spectral signatures. The collaborative VLF ground-based measurements at the Great Wall Station, Antarctica also have a good correspondence with LEP measurements of MSS-1. The observations also imply that lightning activity has a modulation effect on the energetic electron energy-spatial structure.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"9 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconciled estimation of Antarctic ice sheet mass balance and contribution to global sea level change from 1996 to 2021","authors":"Rongxing Li, Guojun Li, Gang Hai, Huan Xie, Yuan Cheng, Wei Chen, Xiangbin Cui, Minghu Ding, Chunchun Gao, Tong Hao, Changqing Ke, Chuanjin Li, Jin Li, Yan Liu, Jiangjun Ran, Jiawen Ren, Qiang Shen, Yunzhong Shen, Hongling Shi, Songyun Wang, Zemin Wang, Jingang Zhan, Baojun Zhang, Min Zhong, Chunxia Zhou","doi":"10.1007/s11430-023-1394-5","DOIUrl":"https://doi.org/10.1007/s11430-023-1394-5","url":null,"abstract":"<p>The Antarctic Ice Sheet (AIS) has been losing ice mass and contributing to global sea level rise (GSLR). Given its mass that is enough to cause ∼58 m of GSLR, accurate estimation of mass balance trend is critical for AIS mass loss monitoring and sea level rise forecasting. Here, we present an improved approach to reconciled solutions of mass balance in AIS and its regions from multiple contributing solutions using the input-out, altimetric, and gravimetric methods. In comparison to previous methods, such as IMBIE 2018, this approach utilizes an adaptive data aggregation window to handle the heterogeneity of the contributing solutions, including the number of solutions, temporal distributions, uncertainties, and estimation techniques. We improved the regression-based method by using a two-step procedure that establishes ensembled solutions within each method (input-output, altimetry, or gravimetry) and then estimates the method-independent reconciled solutions. For the first time, 16 contributing solutions from 8 Chinese institutions are used to estimate the reconciled mass balance of AIS and its regions from 1996 to 2021. Our results show that AIS has lost a total ice mass of ∼3213±253 Gt during the period, an equivalent of ∼8.9±0.7 mm of GSLR. There is a sustained mass loss acceleration since 2006, from 88.1±3.6 Gt yr<sup>−1</sup> during 1996–2005 to 130.7±8.4 Gt yr<sup>−1</sup> during 2006–2013 and further to 157.0±9.0 Gt yr<sup>−1</sup> during 2014–2021. The mass loss signal in the West Antarctica and Antarctic Peninsula is dominant and clearly presented in the reconciled estimation and contributing solutions, regardless of estimation methods used and fluctuation of surface mass balance. Uncertainty and challenges remain in mass balance estimation in East Antarctica. This reconciled estimation approach can be extended and applied for improved mass balance estimation in the Greenland Ice Sheet and mountain glacier regions.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"19 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asad Hussain Muhammad, Waseem Muhammad, Ajmal Muhammad, Atiq Ur Rehman Tariq Muhammad, Jiaqing Xiao, Tao Yang, Pengfei Shi
{"title":"An integrated land change modeler and distributed hydrological model approach for quantifying future urban runoff dynamics","authors":"Asad Hussain Muhammad, Waseem Muhammad, Ajmal Muhammad, Atiq Ur Rehman Tariq Muhammad, Jiaqing Xiao, Tao Yang, Pengfei Shi","doi":"10.1007/s11430-024-1384-8","DOIUrl":"https://doi.org/10.1007/s11430-024-1384-8","url":null,"abstract":"<p>Climate and land use changes have a significant impact on the runoff generation process in urban environments, and these effects could get worse in the future. The combined contributions of these changes have increased the risk of flooding. Therefore, there is a need for integrated modeling to better understand the runoff variability, especially in small urban catchments. To quantify and separate the effects of land-use changes and climate change on the hydrological response of urban catchments with a distributed hydrological model (Storm Water Management Model, SWMM), this study introduces a new integrated approach based on the Machine Learning based land use change modeler and climate change scenarios under CMIP6. Based on supervised classification and land use change model analysis, accumulated impervious area increase from 22% (in 2023) to 33% (in 2060) was observed in the study area. Furthermore, integrating this projected increase in imperviousness with future climate change into SWMM by considering three different scenarios i.e., S1 (Climate Change), S2 (Combined Land Use and Climate Change), and S3 (Land use Change) resulted that climate change could cause an increase in runoff from 13.2% to 18.3% in peak runoff and the contribution of land use could range from 9.1% to 18.6%. Similarly, in response to the coupled effects of climate and land-use change, the runoff would likely change from 24.53% to 39.66%. Conclusively, the study showed that despite climate change, intensive urban development by the substitution of impervious surfaces could also have a severe impact on the microclimate and hydrology of small catchments. Lastly, this study could provide a way forward for the future planning and management of water resources in small catchments which could be extended to larger catchments.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"31 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sources, enrichment mechanisms, and resource effects of rare metal elements-enriched geothermal springs in Xizang, China","authors":"Fei Xue, Hongbing Tan, Xiying Zhang, Jinbao Su","doi":"10.1007/s11430-024-1413-0","DOIUrl":"https://doi.org/10.1007/s11430-024-1413-0","url":null,"abstract":"<p>Rare metals such as lithium (Li), rubidium (Rb), and cesium (Cs) are strategically crucial mineral resources for the development of emerging industries in China. Ensuring a stable long-term supply of these resources is essential. The geothermal systems in Xizang, China are well-developed, with a wide distribution of various types. Most high-temperature geothermal systems in Xizang are exceptionally enriched in rare metal elements (RMEs) and have the potential to become a new source of rare metals to secure China’s strategic mineral resource supply in the future. A close relationship also exists between the geothermal system and the special salt lake resources on the Tibetan Plateau. Geothermal springs thus play a key role in the migration and enrichment of RMEs from deep to shallow parts of the crust, in the transition between endogenous and exogenous mineralization, and source-to-sink processes. However, the mechanisms of element enrichment and evolution in these springs have not been systematically discussed, and many theoretical issues remain to be investigated. Based on summarizing and analyzing previous research, this study employs hydrochemical and isotopic geochemistry methods to investigate typical geothermal springs across Xizang and explore the anomalous enrichment mechanism of RMEs, and the resource effects of geothermal springs. Comprehensive analysis shows that the total dissolved solids (TDS) and hydrochemical types of geothermal springs are similar to those of major geothermal fields worldwide, but the Tibetan springs are abnormally rich in Li (averaging 5.48 mg/L), Rb (averaging 0.75 mg/L), and Cs (averaging 3.58 mg/L), which are hundreds to thousands of times more concentrated than natural waters. The distribution of these enriched geothermal springs is controlled by the Yarlung Zangbo suture zone and the extended N-S trending rifts, especially in the intersection zone of the two, where the geothermal springs are the most enriched. Based on the spatial distribution, isotopic, and elemental geochemistry, the RMEs enriched in Tibetan geothermal springs are mainly derived from the magmatic-hydrothermal fluids generated by the partial melting of the subducted Indian plate under the Eurasian continent. These fluids not only maintain geothermal activities as a heat source but also participate in the material cycle of the geothermal spring as a material source. Against the background of regional crustal enrichment in RMEs, incompatible elements such as Li, Rb, and Cs are gradually enriched in magmatic-hydrothermal processes including partial melting in the source, magmatic differentiation, and hydrothermal fluid exsolution, and some ore-forming elements are further extracted from surrounding rocks through deep high-temperature water-rock interactions. Eventually, an eruption occurs, and these fluids move to the surface to form a geothermal spring rich in RMEs. With the drainage of geothermal springs, the RMEs are continuously transpo","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"40 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Late Paleozoic to early Mesozoic volcanic-sedimentary history of the southeastern margin of the Central Asian Orogenic Belt: Timing of uplift of the Inner Mongolia paleo-uplift","authors":"Wenxing Hao, Jin-Hui Yang, Guang Zhu","doi":"10.1007/s11430-024-1372-0","DOIUrl":"https://doi.org/10.1007/s11430-024-1372-0","url":null,"abstract":"<p>The Kulun region is located in the eastern Bainaimiao arc belt on the southeastern margin of the Central Asian Orogenic Belt (CAOB), adjacent to the North China Craton (NCC) to the south. This region records the closure of the Paleo-Asian Ocean during the Paleozoic to early Mesozoic and is key to study the tectonic evolution of the northern margin of the NCC. We conducted zircon U-Pb geochronology and Hf isotope analysis of volcanic-sedimentary and intrusive rocks in the Kulun region. The volcanic-sedimentary rocks were previously assigned an early Carboniferous age, but include volcanic rocks with ages of 267–266 Ma and sedimentary rocks with youngest detrital zircon age peaks of 265–244 Ma, which were intruded by a granite with an age of 242 Ma. This indicates that these rocks are actually middle Permian to Middle Triassic in age (267–242 Ma) and correspond to the Qingfengshan and Liujiagou formations. Moreover, two volcanic rock samples have high <i>ε</i><sub>Hf</sub>(<i>t</i>) values (+1.6 to +16.1) and relatively young two-stage Hf model ages (1095–327 Ma), indicating their sources associated with the CAOB. The age spectra and Hf isotopic characteristics of detrital zircons from the sedimentary rocks suggest that, during the middle Permian to Middle Triassic, the sedimentary provenance in the Kulun region was mainly the CAOB. However, by the Early Jurassic, the provenance changed to the NCC (i.e., the Inner Mongolia Paleo-uplift, IMPU). This result, combined with the development of a series of conglomerates on the northern margin of the NCC in the Late Triassic (i.e., Xingshikou, Xiaoyingzi, and Xiaohekou formations), indicates the Kulun region experienced an abrupt change in paleogeography during the Late Triassic, with the IMPU undergoing significant uplift and thus becoming the main sediment source in the Kulun region. Based on the Late Triassic alkaline igneous belt (235–215 Ma) in the IMPU, we speculate that this uplift was caused by detachment of the southward-subducting Paleo-Asian oceanic plate, which occurred in a post-orogenic extensional setting. The boundary between the NCC and CAOB (i.e., the Bainaimiao arc belt) in the Kulun region is defined by the newly identified Paleoproterozoic granites (1.8 and 1.6 Ga) and our zircon geochronology and Hf isotope data.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"9 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xisheng Xu, Zhouchuan Huang, Dingsheng Jiang, Gang Zeng, Li-Qun Dai
{"title":"Remnants and fragments of the subducted paleo-Pacific plate: Constraints from geochemistry and geophysics","authors":"Xisheng Xu, Zhouchuan Huang, Dingsheng Jiang, Gang Zeng, Li-Qun Dai","doi":"10.1007/s11430-024-1352-y","DOIUrl":"https://doi.org/10.1007/s11430-024-1352-y","url":null,"abstract":"<p>The subduction and rollback of the paleo-Pacific plate during Mesozoic time was the key engine for the evolution of the continental margin in eastern China. It led to lateral accretion of continental crust in Northeast China, lithospheric destruction beneath the North China Craton, and the generation of huge volumes of felsic magmatic rocks in South China. This had a profound influence on deep material cycles and the evolution of epigenetic environmental systems along the continental margin of East Asia. To fully understand the transformation of the dynamic mechanism during the subduction and rollback of the paleo-Pacific plate, we have attempted to trace the remnants and fragments of the subducted paleo-Pacific plate at great depths. Such remnants in both temporal and spatial dimensions can be tracked by using geochemical and geophysical approaches. Studies of the trace elements, Mg-Zn isotopes and Os-Nd-Hf-Pb-O isotopes in continental basalts from eastern China reveal a significant number of the remnants of subduction of the paleo-Pacific plate, and the initial subduction can be traced back to the Early Jurassic. Large-scale geophysical imaging unveils a multitude of high-velocity anomalies in the lower mantle of East Asia. Notably, many high-velocity bodies, aptly referred to as “slab graveyards”, are nestled at the base of the lower mantle. Numerous isolated high-velocity anomalies are also present in the upper part of the lower mantle, creating conduits for the descent of the subducted slabs into the lower mantle. However, a resolution of the remnants for the subducted slabs within the lower mantle are quite low. Consequently, their impact on the lower mantle’s dynamics is yet to be thoroughly investigated. Finally, the presently observed big mantle wedge (BMW) in East Asia has developed through subduction of the Pacific plate in the Cenozoic. However, following the rollback of the paleo-Pacific plate (began at ∼145 Ma), a Cretaceous BMW system would also form above the mantle transition zone in East Asia. There are significant differences in tectonic-magmatic processes and basin-forming and hydrocarbon-accumulation processes among different regions along the East Asian continental margin. Such differences may be controlled by variations in the speed and angle of rollback of the paleo-Pacific plate.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"3 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-agent mobile networking observation experiment at the air-sea interface of ocean eddy","authors":"Yi Zhang, Dongxiao Wang, Li Zhou, Chunhua Qiu, Yunfei Zhang, Zhiliang Deng, Biao Zhang, Yunping Liu, Yeqiang Shu, Fenghua Zhou, Danian Liu, Zhengqiu Zhang","doi":"10.1007/s11430-023-1389-8","DOIUrl":"https://doi.org/10.1007/s11430-023-1389-8","url":null,"abstract":"<p>Current climate forecasting has advanced to the stage of investigating mesoscale air-sea interactions. Recent studies have identified significant structural differences between the cores and edges of mesoscale eddies; however, the effects of these structural variations on air-sea fluxes and the Marine Atmospheric Boundary Layer (MABL) remain underexplored. Traditional observations often fail to capture the detailed structures of eddies, necessitating enhanced observations at high spatiotemporal resolution for mesoscale eddies. To address this, efforts have been made to develop multi-agent platforms and expendable air-sea interface observation technologies. A task-oriented observation scheme was developed to monitor the spatial characteristics of mesoscale eddies. The South China Sea (SCS) is rich in mesoscale eddies with rapid motion changes, requiring enhanced observations of the air-sea interface using multi-agent mobile networking. An anticyclonic eddy was observed in the eastern region of the Xisha Islands in the SCS, and we examined variations in air-sea fluxes across different regions within the eddy.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"33 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuefa Shi, Bin Wu, Shuqing Qiao, Zhengquan Yao, Limin Hu, Yazhi Bai, Shan Hu, Jie Sheng, Yanguang Liu, Shengfa Liu, Kunshan Wang, Jianjun Zou
{"title":"Distribution, burial fluxes and carbon sink effect of sedimentary organic carbon in the eastern China seas","authors":"Xuefa Shi, Bin Wu, Shuqing Qiao, Zhengquan Yao, Limin Hu, Yazhi Bai, Shan Hu, Jie Sheng, Yanguang Liu, Shengfa Liu, Kunshan Wang, Jianjun Zou","doi":"10.1007/s11430-024-1412-0","DOIUrl":"https://doi.org/10.1007/s11430-024-1412-0","url":null,"abstract":"<p>The ocean is the largest active carbon reservoir on Earth. Organic carbon (OC), as the primary species of carbon sequestration in the ocean, plays an important role in the global carbon cycle through its deposition and burial. In this study, sedimentary OC data from 5796 stations, together with relevant geochemical and sedimentological parameters in the Bohai Sea, Yellow Sea, and East China Sea (BYES) were used to summarize and elucidate the distribution and burial patterns of sedimentary OC, and assess carbon sink effect of sedimentary OC burial. The results show that the OC content in the sediments of the BYES ranges from 0.00% to 2.12%, with an average content of 0.47%±0.26%. OC content is significantly correlated with finegrained sediments, with an average OC content in mud areas being 39% higher than that in non-mud areas. Modern OC buried in the BYES are mainly deposited in 7 major mud areas, with a total sedimentary OC burial flux of approximately 8.20 Mt C yr<sup>−1</sup>. Among them, the burial flux of biospheric OC is 6.92 Mt C yr<sup>−1</sup>, equivalent to the OC consumption amount of silicate weathering of the 9 major river basins in the eastern China. In its natural state, the annually sequestered OC in the sediments of the eastern China seas is equivalent to 25.37 Mt of atmospheric CO<sub>2</sub>, indicating a significant carbon sink effect. The distribution and burial of terrigenous OC in the BYES are mainly influenced by the large river inputs and complex marine hydrodynamic environment, while human activities such as dam construction have significantly altered the OC burial in these coastal mud areas.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"2 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}