{"title":"中国西藏稀有金属元素富集地热泉的来源、富集机制和资源效应","authors":"Fei Xue, Hongbing Tan, Xiying Zhang, Jinbao Su","doi":"10.1007/s11430-024-1413-0","DOIUrl":null,"url":null,"abstract":"<p>Rare metals such as lithium (Li), rubidium (Rb), and cesium (Cs) are strategically crucial mineral resources for the development of emerging industries in China. Ensuring a stable long-term supply of these resources is essential. The geothermal systems in Xizang, China are well-developed, with a wide distribution of various types. Most high-temperature geothermal systems in Xizang are exceptionally enriched in rare metal elements (RMEs) and have the potential to become a new source of rare metals to secure China’s strategic mineral resource supply in the future. A close relationship also exists between the geothermal system and the special salt lake resources on the Tibetan Plateau. Geothermal springs thus play a key role in the migration and enrichment of RMEs from deep to shallow parts of the crust, in the transition between endogenous and exogenous mineralization, and source-to-sink processes. However, the mechanisms of element enrichment and evolution in these springs have not been systematically discussed, and many theoretical issues remain to be investigated. Based on summarizing and analyzing previous research, this study employs hydrochemical and isotopic geochemistry methods to investigate typical geothermal springs across Xizang and explore the anomalous enrichment mechanism of RMEs, and the resource effects of geothermal springs. Comprehensive analysis shows that the total dissolved solids (TDS) and hydrochemical types of geothermal springs are similar to those of major geothermal fields worldwide, but the Tibetan springs are abnormally rich in Li (averaging 5.48 mg/L), Rb (averaging 0.75 mg/L), and Cs (averaging 3.58 mg/L), which are hundreds to thousands of times more concentrated than natural waters. The distribution of these enriched geothermal springs is controlled by the Yarlung Zangbo suture zone and the extended N-S trending rifts, especially in the intersection zone of the two, where the geothermal springs are the most enriched. Based on the spatial distribution, isotopic, and elemental geochemistry, the RMEs enriched in Tibetan geothermal springs are mainly derived from the magmatic-hydrothermal fluids generated by the partial melting of the subducted Indian plate under the Eurasian continent. These fluids not only maintain geothermal activities as a heat source but also participate in the material cycle of the geothermal spring as a material source. Against the background of regional crustal enrichment in RMEs, incompatible elements such as Li, Rb, and Cs are gradually enriched in magmatic-hydrothermal processes including partial melting in the source, magmatic differentiation, and hydrothermal fluid exsolution, and some ore-forming elements are further extracted from surrounding rocks through deep high-temperature water-rock interactions. Eventually, an eruption occurs, and these fluids move to the surface to form a geothermal spring rich in RMEs. With the drainage of geothermal springs, the RMEs are continuously transported to the lake basin by surface runoff and continue to concentrate and evolve into salt lake brines under an extremely arid climate environment, constituting an endogenous source and exogenous accumulation salt lake metallogenic model. This comprehensive explanation of the sources, migration, enrichment mechanisms, and resource effects of geothermal springs will deepen the understanding of rare metal mineralization processes, and aid in the advancement of theoretical models for key rare metal mineral resources in various geological bodies of the Tibetan Plateau, significantly expanding exploration scopes and accurately assessing the resource potential of RMEs.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sources, enrichment mechanisms, and resource effects of rare metal elements-enriched geothermal springs in Xizang, China\",\"authors\":\"Fei Xue, Hongbing Tan, Xiying Zhang, Jinbao Su\",\"doi\":\"10.1007/s11430-024-1413-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rare metals such as lithium (Li), rubidium (Rb), and cesium (Cs) are strategically crucial mineral resources for the development of emerging industries in China. Ensuring a stable long-term supply of these resources is essential. The geothermal systems in Xizang, China are well-developed, with a wide distribution of various types. Most high-temperature geothermal systems in Xizang are exceptionally enriched in rare metal elements (RMEs) and have the potential to become a new source of rare metals to secure China’s strategic mineral resource supply in the future. A close relationship also exists between the geothermal system and the special salt lake resources on the Tibetan Plateau. Geothermal springs thus play a key role in the migration and enrichment of RMEs from deep to shallow parts of the crust, in the transition between endogenous and exogenous mineralization, and source-to-sink processes. However, the mechanisms of element enrichment and evolution in these springs have not been systematically discussed, and many theoretical issues remain to be investigated. Based on summarizing and analyzing previous research, this study employs hydrochemical and isotopic geochemistry methods to investigate typical geothermal springs across Xizang and explore the anomalous enrichment mechanism of RMEs, and the resource effects of geothermal springs. Comprehensive analysis shows that the total dissolved solids (TDS) and hydrochemical types of geothermal springs are similar to those of major geothermal fields worldwide, but the Tibetan springs are abnormally rich in Li (averaging 5.48 mg/L), Rb (averaging 0.75 mg/L), and Cs (averaging 3.58 mg/L), which are hundreds to thousands of times more concentrated than natural waters. The distribution of these enriched geothermal springs is controlled by the Yarlung Zangbo suture zone and the extended N-S trending rifts, especially in the intersection zone of the two, where the geothermal springs are the most enriched. Based on the spatial distribution, isotopic, and elemental geochemistry, the RMEs enriched in Tibetan geothermal springs are mainly derived from the magmatic-hydrothermal fluids generated by the partial melting of the subducted Indian plate under the Eurasian continent. These fluids not only maintain geothermal activities as a heat source but also participate in the material cycle of the geothermal spring as a material source. Against the background of regional crustal enrichment in RMEs, incompatible elements such as Li, Rb, and Cs are gradually enriched in magmatic-hydrothermal processes including partial melting in the source, magmatic differentiation, and hydrothermal fluid exsolution, and some ore-forming elements are further extracted from surrounding rocks through deep high-temperature water-rock interactions. Eventually, an eruption occurs, and these fluids move to the surface to form a geothermal spring rich in RMEs. With the drainage of geothermal springs, the RMEs are continuously transported to the lake basin by surface runoff and continue to concentrate and evolve into salt lake brines under an extremely arid climate environment, constituting an endogenous source and exogenous accumulation salt lake metallogenic model. This comprehensive explanation of the sources, migration, enrichment mechanisms, and resource effects of geothermal springs will deepen the understanding of rare metal mineralization processes, and aid in the advancement of theoretical models for key rare metal mineral resources in various geological bodies of the Tibetan Plateau, significantly expanding exploration scopes and accurately assessing the resource potential of RMEs.</p>\",\"PeriodicalId\":21651,\"journal\":{\"name\":\"Science China Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11430-024-1413-0\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11430-024-1413-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Sources, enrichment mechanisms, and resource effects of rare metal elements-enriched geothermal springs in Xizang, China
Rare metals such as lithium (Li), rubidium (Rb), and cesium (Cs) are strategically crucial mineral resources for the development of emerging industries in China. Ensuring a stable long-term supply of these resources is essential. The geothermal systems in Xizang, China are well-developed, with a wide distribution of various types. Most high-temperature geothermal systems in Xizang are exceptionally enriched in rare metal elements (RMEs) and have the potential to become a new source of rare metals to secure China’s strategic mineral resource supply in the future. A close relationship also exists between the geothermal system and the special salt lake resources on the Tibetan Plateau. Geothermal springs thus play a key role in the migration and enrichment of RMEs from deep to shallow parts of the crust, in the transition between endogenous and exogenous mineralization, and source-to-sink processes. However, the mechanisms of element enrichment and evolution in these springs have not been systematically discussed, and many theoretical issues remain to be investigated. Based on summarizing and analyzing previous research, this study employs hydrochemical and isotopic geochemistry methods to investigate typical geothermal springs across Xizang and explore the anomalous enrichment mechanism of RMEs, and the resource effects of geothermal springs. Comprehensive analysis shows that the total dissolved solids (TDS) and hydrochemical types of geothermal springs are similar to those of major geothermal fields worldwide, but the Tibetan springs are abnormally rich in Li (averaging 5.48 mg/L), Rb (averaging 0.75 mg/L), and Cs (averaging 3.58 mg/L), which are hundreds to thousands of times more concentrated than natural waters. The distribution of these enriched geothermal springs is controlled by the Yarlung Zangbo suture zone and the extended N-S trending rifts, especially in the intersection zone of the two, where the geothermal springs are the most enriched. Based on the spatial distribution, isotopic, and elemental geochemistry, the RMEs enriched in Tibetan geothermal springs are mainly derived from the magmatic-hydrothermal fluids generated by the partial melting of the subducted Indian plate under the Eurasian continent. These fluids not only maintain geothermal activities as a heat source but also participate in the material cycle of the geothermal spring as a material source. Against the background of regional crustal enrichment in RMEs, incompatible elements such as Li, Rb, and Cs are gradually enriched in magmatic-hydrothermal processes including partial melting in the source, magmatic differentiation, and hydrothermal fluid exsolution, and some ore-forming elements are further extracted from surrounding rocks through deep high-temperature water-rock interactions. Eventually, an eruption occurs, and these fluids move to the surface to form a geothermal spring rich in RMEs. With the drainage of geothermal springs, the RMEs are continuously transported to the lake basin by surface runoff and continue to concentrate and evolve into salt lake brines under an extremely arid climate environment, constituting an endogenous source and exogenous accumulation salt lake metallogenic model. This comprehensive explanation of the sources, migration, enrichment mechanisms, and resource effects of geothermal springs will deepen the understanding of rare metal mineralization processes, and aid in the advancement of theoretical models for key rare metal mineral resources in various geological bodies of the Tibetan Plateau, significantly expanding exploration scopes and accurately assessing the resource potential of RMEs.
期刊介绍:
Science China Earth Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.