Xuefa Shi, Bin Wu, Shuqing Qiao, Zhengquan Yao, Limin Hu, Yazhi Bai, Shan Hu, Jie Sheng, Yanguang Liu, Shengfa Liu, Kunshan Wang, Jianjun Zou
{"title":"Distribution, burial fluxes and carbon sink effect of sedimentary organic carbon in the eastern China seas","authors":"Xuefa Shi, Bin Wu, Shuqing Qiao, Zhengquan Yao, Limin Hu, Yazhi Bai, Shan Hu, Jie Sheng, Yanguang Liu, Shengfa Liu, Kunshan Wang, Jianjun Zou","doi":"10.1007/s11430-024-1412-0","DOIUrl":null,"url":null,"abstract":"<p>The ocean is the largest active carbon reservoir on Earth. Organic carbon (OC), as the primary species of carbon sequestration in the ocean, plays an important role in the global carbon cycle through its deposition and burial. In this study, sedimentary OC data from 5796 stations, together with relevant geochemical and sedimentological parameters in the Bohai Sea, Yellow Sea, and East China Sea (BYES) were used to summarize and elucidate the distribution and burial patterns of sedimentary OC, and assess carbon sink effect of sedimentary OC burial. The results show that the OC content in the sediments of the BYES ranges from 0.00% to 2.12%, with an average content of 0.47%±0.26%. OC content is significantly correlated with finegrained sediments, with an average OC content in mud areas being 39% higher than that in non-mud areas. Modern OC buried in the BYES are mainly deposited in 7 major mud areas, with a total sedimentary OC burial flux of approximately 8.20 Mt C yr<sup>−1</sup>. Among them, the burial flux of biospheric OC is 6.92 Mt C yr<sup>−1</sup>, equivalent to the OC consumption amount of silicate weathering of the 9 major river basins in the eastern China. In its natural state, the annually sequestered OC in the sediments of the eastern China seas is equivalent to 25.37 Mt of atmospheric CO<sub>2</sub>, indicating a significant carbon sink effect. The distribution and burial of terrigenous OC in the BYES are mainly influenced by the large river inputs and complex marine hydrodynamic environment, while human activities such as dam construction have significantly altered the OC burial in these coastal mud areas.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11430-024-1412-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ocean is the largest active carbon reservoir on Earth. Organic carbon (OC), as the primary species of carbon sequestration in the ocean, plays an important role in the global carbon cycle through its deposition and burial. In this study, sedimentary OC data from 5796 stations, together with relevant geochemical and sedimentological parameters in the Bohai Sea, Yellow Sea, and East China Sea (BYES) were used to summarize and elucidate the distribution and burial patterns of sedimentary OC, and assess carbon sink effect of sedimentary OC burial. The results show that the OC content in the sediments of the BYES ranges from 0.00% to 2.12%, with an average content of 0.47%±0.26%. OC content is significantly correlated with finegrained sediments, with an average OC content in mud areas being 39% higher than that in non-mud areas. Modern OC buried in the BYES are mainly deposited in 7 major mud areas, with a total sedimentary OC burial flux of approximately 8.20 Mt C yr−1. Among them, the burial flux of biospheric OC is 6.92 Mt C yr−1, equivalent to the OC consumption amount of silicate weathering of the 9 major river basins in the eastern China. In its natural state, the annually sequestered OC in the sediments of the eastern China seas is equivalent to 25.37 Mt of atmospheric CO2, indicating a significant carbon sink effect. The distribution and burial of terrigenous OC in the BYES are mainly influenced by the large river inputs and complex marine hydrodynamic environment, while human activities such as dam construction have significantly altered the OC burial in these coastal mud areas.
期刊介绍:
Science China Earth Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.