New Phytologist最新文献

筛选
英文 中文
ChromEvol v.3: modeling rate heterogeneity in chromosome number evolution ChromEvol v.3:染色体数目进化的建模速率异质性
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-12-16 DOI: 10.1111/nph.20339
Anat Shafir, Keren Halabi, Ella Baumer, Itay Mayrose
{"title":"ChromEvol v.3: modeling rate heterogeneity in chromosome number evolution","authors":"Anat Shafir, Keren Halabi, Ella Baumer, Itay Mayrose","doi":"10.1111/nph.20339","DOIUrl":"https://doi.org/10.1111/nph.20339","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Changes in chromosome numbers are a prominent driver of plant evolution, impacting ecological diversification, stress tolerance, and phenotypes. <span>ChromEvol</span> is a widely used software tool for deciphering patterns of chromosome-number change along a phylogeny of interest. It evaluates the fit of alternative models to the data, estimates transition rates of different types of events, and infers the expected number of events along each branch of the phylogeny.</li>\u0000<li>We introduce <span>ChromEvol</span> v.3, featuring multiple novel methodological advancements that capture variation in the transition rates along a phylogeny. This version better allows researchers to identify how dysploidy and polyploidy rates change based on the number of chromosomes in the genome, with respect to a discrete trait, or at certain subclades of the phylogeny.</li>\u0000<li>We demonstrate the applicability of the new models on the Solanaceae phylogeny. Our analyses identify four chromosome-number transition regimes that characterize distinct Solanaceae clades and demonstrate an association between self-compatibility and altered dynamics of chromosome-number evolution.</li>\u0000<li>\u0000<span>ChromEvol</span> v.3, available at https://github.com/anatshafir1/chromevol, offers researchers a more flexible, comprehensive, and accurate tool to investigate the evolution of chromosome numbers and the various processes affecting it.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"10 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize SnRK2.2-ZmHsf28-JAZ14/17 模块调控玉米的抗旱性
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-12-16 DOI: 10.1111/nph.20355
Lijun Liu, Chen Tang, Yuhan Zhang, Xiaoyu Sha, Shuaibing Tian, Ziyi Luo, Guocheng Wei, Li Zhu, Yuxin Li, Jingye Fu, Peigao Luo, Qiang Wang
{"title":"The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize","authors":"Lijun Liu, Chen Tang, Yuhan Zhang, Xiaoyu Sha, Shuaibing Tian, Ziyi Luo, Guocheng Wei, Li Zhu, Yuxin Li, Jingye Fu, Peigao Luo, Qiang Wang","doi":"10.1111/nph.20355","DOIUrl":"https://doi.org/10.1111/nph.20355","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Abscisic acid (ABA) and jasmonic acid (JA) are important plant hormones in response to drought stress. We have identified that ZmHsf28 elevated ABA and JA accumulation to confer drought tolerance in maize; however, the underlying mechanism still remains elusive.</li>\u0000<li>The knockout line <i>zmhsf28</i> is generated to confirm the positive role of ZmHsf28 in drought response. Multiple approaches are combined to reveal protein interaction among ZmHsf28, ZmSnRK2.2 and ZmJAZ14/17, which form a regulatory module to mediate maize drought tolerance through regulating ABA and JA key biosynthetic genes <i>ZmNCED3</i> and <i>ZmLOX8</i>.</li>\u0000<li>Upon drought stress, <i>zmhsf28</i> plants exhibit weaker tolerance than the WT plants with slower stomatal closure and more reactive oxygen species accumulation. ZmHsf28 interacted with ZmSnRK2.2 physically, resulting in phosphorylation at Ser220, which enhances binding to the heat shock elements of <i>ZmNECD3</i> and <i>ZmLOX8</i> promoters and subsequent gene expression. Meanwhile, ZmMYC2 upregulates <i>ZmHsf28</i> gene expression through acting on the G-box of its promoter. Besides, ZmJAZ14/17 competitively interact with ZmHsf28 to interfere with protein interaction between ZmHsf28 and ZmSnRK2.2, blocking ZmHsf28 phosphorylation and impairing downstream gene regulation.</li>\u0000<li>The ZmSnRK2.2-ZmHsf28-ZmJAZ14/17 module is identified to regulate drought tolerance through coordinating ABA and JA signaling, providing the insights for breeding to improve drought resistance in maize.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"23 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of sympatric host-specialized lineages of the fungal plant pathogen Zymoseptoria passerinii in natural ecosystems 自然生态系统中植物真菌病菌病菌同域寄主特化谱系的进化
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-12-16 DOI: 10.1111/nph.20340
Idalia C. Rojas-Barrera, Victor M. Flores-Núñez, Janine Haueisen, Alireza Alizadeh, Fatemeh Salimi, Eva H. Stukenbrock
{"title":"Evolution of sympatric host-specialized lineages of the fungal plant pathogen Zymoseptoria passerinii in natural ecosystems","authors":"Idalia C. Rojas-Barrera, Victor M. Flores-Núñez, Janine Haueisen, Alireza Alizadeh, Fatemeh Salimi, Eva H. Stukenbrock","doi":"10.1111/nph.20340","DOIUrl":"https://doi.org/10.1111/nph.20340","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;The increasing emergence and severity of infectious fungal diseases threaten food security and natural ecosystems (Fisher &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012&lt;/span&gt;; Stukenbrock &amp; Gurr, &lt;span&gt;2023&lt;/span&gt;). Continuous monitoring, prediction modeling of disease spread, and deeper comprehension of fungal pathogens in wild plant hosts have been largely neglected. This is crucial to profile the impact of fungal pathogens on the context of climate change and independent of agricultural environments (Fisher &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012&lt;/span&gt;). Current evidence supports that crop wild relatives (CWRs) might serve as reservoirs for domesticated plant pathogens (Monteil &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;, &lt;span&gt;2016&lt;/span&gt;), although still few studies are focused on wild pathogen population processes and dynamics (Rouxel &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;; Penczykowski &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2015&lt;/span&gt;; Eck &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;; Treindl &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). CWRs hold higher levels of genetic diversity and have coevolved in sympatry with plant pathogens in natural ecosystems. Moreover, the centers of diversity and domestication of crop plants harbor a wealth of species (Harlan, &lt;span&gt;1971&lt;/span&gt;) that could serve as hosts for plant pathogens (Vavilov, &lt;span&gt;1992&lt;/span&gt;). Despite the latter, natural ecosystems are undervalued economically, which limits funding for studies (Fisher &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012&lt;/span&gt;). Furthermore, having access to wild species found in remote locations or immersed in complex geopolitical contexts adds another layer of difficulty, generating a geographical bias toward high-income regions at the expense of exploring the remaining biodiversity (Marks &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). One way to overcome this is to prioritize neglected areas by collaborating with scientific communities situated in less-represented regions of the globe (Marks &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;), and promoting research on nonmodel species and dynamics in natural ecosystems.&lt;/p&gt;\u0000&lt;p&gt;Cumulative evidence supports that ecological divergence of plant pathogens is driven by host specialization. As proposed by Crous &amp; Groenewald (&lt;span&gt;2005&lt;/span&gt;) and exemplified by multiple studies (Steenkamp &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2002&lt;/span&gt;; Choi &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2011&lt;/span&gt;; Rouxel &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;; Faticov &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;), plant pathogens phylogenies frequently represent multiple closely related sister or cryptic species. In this regard, the &lt;i&gt;Zymoseptoria&lt;/i&gt; genus comprises eight ascomycete species, only two of them, &lt;i&gt;Zymoseptoria tritici&lt;/i&gt; and &lt;i&gt;Zymoseptoria passerinii&lt;/i&gt; (Sacc.) Quaedvlieg &amp; Crous, have been reported to infect domesticated hosts (Quaedvlieg &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2011&lt;/span&gt;; Stukenbrock &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012b&lt;/span&gt;). The origin, population genetics, and plant–pathogen dynamics of the wheat fungal pathogen &lt;i&gt;Z. tritici&lt;/i&gt; have been extensively investigated","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"54 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature governs the relative contributions of cuticle and stomata to leaf minimum conductance 温度决定角质层和气孔对叶片最小导度的相对贡献
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-12-14 DOI: 10.1111/nph.20346
Josef C. Garen, Sean T. Michaletz
{"title":"Temperature governs the relative contributions of cuticle and stomata to leaf minimum conductance","authors":"Josef C. Garen, Sean T. Michaletz","doi":"10.1111/nph.20346","DOIUrl":"https://doi.org/10.1111/nph.20346","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;Climate change is increasing the frequency and severity of hot drought events in many parts of the world, with further increases forecast for the coming century (Intergovernmental Panel on Climate Change (IPCC), &lt;span&gt;2021&lt;/span&gt;). During periods of water stress, plants typically reduce their stomatal aperture, restricting both water loss and carbon substrate availability for photosynthesis (Cowan &amp; Farquhar, &lt;span&gt;1977&lt;/span&gt;). However, even with stomata maximally closed, leaves still lose water at a rate described by the leaf minimum conductance to water vapour, &lt;i&gt;g&lt;/i&gt;&lt;sub&gt;min&lt;/sub&gt; (mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;; Table 1) (Duursma &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;). While &lt;i&gt;g&lt;/i&gt;&lt;sub&gt;min&lt;/sub&gt; is typically more than an order of magnitude less than stomatal conductance (&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;sw&lt;/sub&gt;; mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;) during more favourable conditions (Slot &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;), plants may lose substantial amounts of water even under maximal stomatal closure due to high evaporative demand (Vicente-Serrano &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;). Improved understanding of &lt;i&gt;g&lt;/i&gt;&lt;sub&gt;min&lt;/sub&gt; is necessary, as transpiration during hot drought events can have substantial effects on plant mortality and landscape-scale water balance (Park Williams &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;; Rogers &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2017&lt;/span&gt;; Hammond &amp; Adams, &lt;span&gt;2019&lt;/span&gt;).&lt;/p&gt;\u0000&lt;div&gt;\u0000&lt;header&gt;&lt;span&gt;Table 1. &lt;/span&gt;List of symbols.&lt;/header&gt;\u0000&lt;div tabindex=\"0\"&gt;\u0000&lt;table&gt;\u0000&lt;thead&gt;\u0000&lt;tr&gt;\u0000&lt;th&gt;Symbol&lt;/th&gt;\u0000&lt;th&gt;Definition&lt;/th&gt;\u0000&lt;th&gt;Units&lt;/th&gt;\u0000&lt;/tr&gt;\u0000&lt;/thead&gt;\u0000&lt;tbody&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;A&lt;/i&gt;&lt;/td&gt;\u0000&lt;td&gt;Net assimilation rate&lt;/td&gt;\u0000&lt;td&gt;μmol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;a&lt;/i&gt;&lt;sub&gt;l&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;One-sided (projected) leaf area&lt;/td&gt;\u0000&lt;td&gt;m&lt;sup&gt;2&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;c&lt;/i&gt;&lt;sub&gt;a&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Ambient air CO&lt;sub&gt;2&lt;/sub&gt; concentration&lt;/td&gt;\u0000&lt;td&gt;μmol mol&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;c&lt;/i&gt;&lt;sub&gt;i&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Leaf intercellular CO&lt;sub&gt;2&lt;/sub&gt; concentration&lt;/td&gt;\u0000&lt;td&gt;μmol mol&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;E&lt;/i&gt;&lt;/td&gt;\u0000&lt;td&gt;Transpiration rate&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;bw&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Leaf boundary layer conductance to water vapour&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;cw&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Leaf cuticular conductance to water vapour&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;min&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Leaf minimum conductance to water vapour&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;sw&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Stomatal conductance to water vapour&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;sw,min&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Minimum stomatal conductance&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;span data-altimg=\"/cms/asset/a4dd9478-c7b4-4223-89b8-9d04cfe00212/nph20346-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"0\" ctxtmenu_","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"16 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperspectral reflectance integrates key traits for predicting leaf metabolism 高光谱反射率综合了预测叶片代谢的关键性状
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-12-14 DOI: 10.1111/nph.20345
Troy S. Magney
{"title":"Hyperspectral reflectance integrates key traits for predicting leaf metabolism","authors":"Troy S. Magney","doi":"10.1111/nph.20345","DOIUrl":"https://doi.org/10.1111/nph.20345","url":null,"abstract":"&lt;div&gt;There has been widespread interest in developing trait-based models to predict photosynthetic capacity from leaves to ecosystems (Walker &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2014&lt;/span&gt;; Xu &amp; Trugman, &lt;span&gt;2021&lt;/span&gt;), but comparably less for nonphotorespiratory mitochondrial CO&lt;sub&gt;2&lt;/sub&gt; release (dark respiration, &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt;). This is significant, given that about half of the CO&lt;sub&gt;2&lt;/sub&gt; released from plants is via &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt; – which occurs day and night – and supports ATP production, redox balance, nitrogen assimilation and carbon skeleton synthesis (Atkin &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2015&lt;/span&gt;). Terrestrial biosphere models use simplified empirical relationships between the maximum rate of carboxylation (&lt;i&gt;V&lt;/i&gt;&lt;sub&gt;cmax&lt;/sub&gt;) and &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt; – often derived from more easily measurable leaf traits such as leaf mass per area (LMA), leaf lifespan, nitrogen (N), and phosphorus (P), which have more extensive data availability (Reich &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;1998&lt;/span&gt;; Tcherkez &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;). Notably, these traits are measured across a unidimensional continuum, and there has yet to be solid evidence that the magnitude and direction of a leaf trait is highly predictive of a metabolic trait like &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt;. Leaf metabolic parameters change dramatically with their environment and encompass an integrated suite of traits – some which increase, some which decrease, and some that remain unchanged. This begs the question – &lt;i&gt;is there an alternative approach&lt;/i&gt;, &lt;i&gt;which integrates a large suite of the biochemical&lt;/i&gt;, &lt;i&gt;structural and environmental traits&lt;/i&gt;, &lt;i&gt;to predict R&lt;/i&gt;&lt;sub&gt;&lt;i&gt;dark&lt;/i&gt;&lt;/sub&gt; &lt;i&gt;on its own?&lt;/i&gt; A recent paper published in &lt;i&gt;New Phytologist&lt;/i&gt; (Wu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;; doi:10.1111/nph.20267) addresses this question by comparing the utility of traditional trait-based approaches against hyperspectral reflectance data across three forest types. &lt;blockquote&gt;&lt;p&gt;‘By incorporating bidirectional variations across the visible to shortwave spectrum, hyperspectral reflectance effectively captures dynamic shifts in a broad array of leaf structural and biochemical traits…’&lt;/p&gt;\u0000&lt;div&gt;&lt;/div&gt;\u0000&lt;/blockquote&gt;\u0000&lt;/div&gt;\u0000&lt;p&gt;Wu &lt;i&gt;et al&lt;/i&gt;. (&lt;span&gt;2024&lt;/span&gt;) show that while trait-based models have provided valuable insights in some other studies, their predictive power of &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt; is underwhelming. The authors show that univariate trait&lt;i&gt;–R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt; relationships are weak (&lt;i&gt;r&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt; ≤ 0.15), and even multivariate models explain only a fraction of the observed variability (&lt;i&gt;r&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt; = 0.30), leaving much of &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt; complexity unexplained. Beyond traditional leaf economic traits like LMA, N, and P, the authors investigate other elements such as magnesium (Mg), manganese (Mn), calcium (Ca), potassium (K), and sulfur (S), as they play crucial roles in respiratory metabolism but are rarely incorporated into predicti","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"142 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forest dynamics where typhoon winds blow 台风吹拂下的森林动态
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-12-14 DOI: 10.1111/nph.20350
Aland H. Y. Chan, Toby D. Jackson, Ying Ki Law, E-Ping Rau, David A. Coomes
{"title":"Forest dynamics where typhoon winds blow","authors":"Aland H. Y. Chan, Toby D. Jackson, Ying Ki Law, E-Ping Rau, David A. Coomes","doi":"10.1111/nph.20350","DOIUrl":"https://doi.org/10.1111/nph.20350","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;Tropical cyclones (TCs), also known as typhoons or hurricanes, are rotating storm systems that bring strong winds and heavy rainfall, often causing substantial damage to natural ecosystems. Even TCs graded 1–2 on the five-point Saffir–Simpson scale bring sustained wind speeds &gt; 125 km h&lt;sup&gt;−1&lt;/sup&gt;, leading to defoliation, branch breakage, bole snapping, and uprooting of forest trees (Tanner &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;1991&lt;/span&gt;; Everham &amp; Brokaw, &lt;span&gt;1996&lt;/span&gt;; Negrón-Juárez &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2014&lt;/span&gt;; Lin &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;). TCs cause substantial loss of aboveground forest biomass (AGB), with West Mexican and Puerto Rican forests reportedly losing 34% (Parker &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2018&lt;/span&gt;) and 23% (Hall &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;) of ABG after category 3–4 TC events, respectively. TCs change forest structure, not only by damaging trees but also by remodelling tree architecture amongst survivors (Bonnesoeur &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2016&lt;/span&gt;; Ankori-Karlinsky &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;). Regions that frequently experience strong TCs have shorter forests with higher stem densities (De Gouvenain &amp; Silander, &lt;span&gt;2003&lt;/span&gt;; Ibanez &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;; Lin &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;), with trees investing into larger basal areas relative to their heights (Ibanez &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;). Under climate change, TCs are becoming less frequent but more intense (Kossin &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;; Chand &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;) and are shifting towards higher latitudes (Murakami &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;; Chand &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;). To predict how these changes might affect forests in the future, it is critical that we have a comprehensive understanding of wind-forest dynamics at various spatiotemporal scales (Ennos, &lt;span&gt;1997&lt;/span&gt;; Lin &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;We currently have limited knowledge on how wind, topography, and forest structure affect forest resistance to TCs at a landscape scale. Previous studies have shown that canopy height, soil type, stock density, and management action (e.g. thinning) could all affect forest resistance to strong winds (Cremer &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;1982&lt;/span&gt;; Martin &amp; Ogden, &lt;span&gt;2006&lt;/span&gt;; Gardiner, &lt;span&gt;2021&lt;/span&gt;). However, most of these studies were carried out in coniferous monocultures on flat terrain. We now know that the most valuable forests from biodiversity, carbon, and ecosystem services stand points are those with complex canopy structures (Bohn &amp; Huth, &lt;span&gt;2016&lt;/span&gt;; Jucker &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2018&lt;/span&gt;; Zhu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). Much of these forests also grow on rugged landscapes, where sites a mere few hundred meters apart could have vastly different wind regimes (Finnigan &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;). Only a handful of studies have investigated the factors affecting TC-resistance in these more complex systems ","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"5 4 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CsIREH1 phosphorylation regulates DELLA protein affecting plant height in cucumber (Cucumis sativus) CsIREH1磷酸化调控影响黄瓜株高的DELLA蛋白
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-12-13 DOI: 10.1111/nph.20309
Hongjiao Zhao, Piaoyun Sun, Can Tong, Xiangbao Li, Tongwen Yang, Yanxin Jiang, Bosi Zhao, Junyang Dong, Biao Jiang, Junjun Shen, Zheng Li
{"title":"CsIREH1 phosphorylation regulates DELLA protein affecting plant height in cucumber (Cucumis sativus)","authors":"Hongjiao Zhao, Piaoyun Sun, Can Tong, Xiangbao Li, Tongwen Yang, Yanxin Jiang, Bosi Zhao, Junyang Dong, Biao Jiang, Junjun Shen, Zheng Li","doi":"10.1111/nph.20309","DOIUrl":"https://doi.org/10.1111/nph.20309","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Plant height is a critical agronomic trait that affects crop yield, plant architecture, and environmental adaptability. Gibberellins (GAs) regulate plant height, with DELLA proteins acting as key repressors in the GA signaling pathway by inhibiting GA-induced growth. While DELLA phosphorylation is essential for regulating plant height, the precise mechanisms underlying this process remain incompletely understood.</li>\u0000<li>In this study, we identified a cucumber mutant with delayed growth, which exhibited reduced sensitivity to GA treatment. Through bulked segregant analysis (BSA-seq) combined with molecular marker linkage analysis, we successfully identified and cloned the gene responsible for the dwarf phenotype, <i>CsIREH1</i> (<i>INCOMPLETE ROOT HAIR ELONGATION 1</i>), which encodes an AGC protein kinase.</li>\u0000<li>Further research revealed that CsIREH1 interacts with and phosphorylates DELLA proteins, specifically targeting CsGAIP and CsGAI2. We propose that IREH1-dependent phosphorylation of DELLA proteins prevents their excessive accumulation, thereby maintaining normal plant growth.</li>\u0000<li>Therefore, investigating the role of IREH1-mediated DELLA phosphorylation provides valuable insights and theoretical foundations for understanding how plants regulate growth mechanisms.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"63 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to: The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance 拟南芥剪接因子PORCUPINE/SmE1通过生长素稳态维持调控温度依赖性根的发育
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-12-13 DOI: 10.1111/nph.20352
{"title":"Corrigendum to: The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance","authors":"","doi":"10.1111/nph.20352","DOIUrl":"https://doi.org/10.1111/nph.20352","url":null,"abstract":"<p><i>New Phytologist</i> <b>244</b> (2024), 1408–1421, doi: 10.1111/nph.20153</p>\u0000<p>Since its publication, the authors of El Arbi <i>et al</i>. (<span>2024</span>) have identified that under the heading ‘RNA extraction, strand-specific RNA sequencing and data analysis’, the text ‘MRNA sequences were aligned with Salmon (v.0.14.2) (Patro <i>et al</i>., <span>2017</span>) to the <i>A. thaliana</i> Reference Transcript Dataset 2 (Zhang <i>et al</i>., <span>2017</span>)’ should read ‘MRNA sequences were aligned with Salmon (v.0.14.2) (Patro <i>et al</i>., <span>2017</span>) to the <i>A. thaliana</i> Reference Transcript Dataset 2 (AtRTD2-Quasi) (Zhang <i>et al</i>., <span>2017</span>)’.</p>\u0000<p>We apologise to our readers for this omission.</p>\u0000<p>Author for correspondence:</p>\u0000<p><i>Markus Schmid</i></p>\u0000<p><i>Email:</i> markus.schmid@slu.se</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"14 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased chloroplast occupancy in bundle sheath cells of rice hap3H mutants revealed by Chloro-Count: a new deep learning–based tool 基于深度学习的新工具Chloro-Count揭示了水稻hap3H突变体束鞘细胞叶绿体占用率的增加
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-12-12 DOI: 10.1111/nph.20332
Julia Lambret Frotte, Pedro P. Buarque de Gusmão, Georgia Smith, Shuen-Fang Lo, Su-May Yu, Ross W. Hendron, Steven Kelly, Jane A. Langdale
{"title":"Increased chloroplast occupancy in bundle sheath cells of rice hap3H mutants revealed by Chloro-Count: a new deep learning–based tool","authors":"Julia Lambret Frotte, Pedro P. Buarque de Gusmão, Georgia Smith, Shuen-Fang Lo, Su-May Yu, Ross W. Hendron, Steven Kelly, Jane A. Langdale","doi":"10.1111/nph.20332","DOIUrl":"https://doi.org/10.1111/nph.20332","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>There is an increasing demand to boost photosynthesis in rice to increase yield potential. Chloroplasts are the site of photosynthesis, and increasing their number and size is a potential route to elevate photosynthetic activity. Notably, bundle sheath cells do not make a significant contribution to overall carbon fixation in rice, and thus, various attempts are being made to increase chloroplast content specifically in this cell type.</li>\u0000<li>In this study, we developed and applied a deep learning tool, Chloro-Count, and used it to quantify chloroplast dimensions in bundle sheath cells of <i>OsHAP3H</i> gain- and loss-of-function mutants in rice.</li>\u0000<li>Loss of <i>OsHAP3H</i> increased chloroplast occupancy in bundle sheath cells by 50%. When grown in the field, mutants exhibited increased numbers of tillers and panicles. The implementation of Chloro-Count enabled precise quantification of chloroplasts in loss- and gain-of-function <i>OsHAP3H</i> mutants and facilitated a comparison between 2D and 3D quantification methods.</li>\u0000<li>Collectively, our observations revealed that a mechanism operates in bundle sheath cells to restrict chloroplast occupancy as cell dimensions increase. That mechanism is unperturbed in <i>Oshap3H</i> mutants but loss of <i>OsHAP3H</i> function leads to an increase in chloroplast numbers. The use of Chloro-Count also revealed that 2D quantification is compromised by the positioning of chloroplasts within the cell.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"91 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp. 年龄依赖性miR156的适当活性是西番莲叶片异型发育和花外蜜腺发育所必需的。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-12-12 DOI: 10.1111/nph.20343
Jessica Ribeiro Soares, Kerly Jessenia Moncaleano Robledo, Vinicius Carius de Souza, Lana Laene Lima Dias, Lazara Aline Simões Silva, Emerson Campos da Silveira, Claudinei da Silva Souza, Elisandra Silva Sousa, Pedro Alexandre Sodrzeieski, Yoan Camilo Guzman Sarmiento, Elyabe Monteiro de Matos, Thais Castilho de Arruda Falcão, Lilian da Silva Fialho, Valeria Monteze Guimaraes, Lyderson Facio Viccini, Flaviani Gabriela Pierdona, Elisson Romanel, Jim Fouracre, Wagner Campos Otoni, Fabio Tebaldi Silveira Nogueira
{"title":"Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp.","authors":"Jessica Ribeiro Soares, Kerly Jessenia Moncaleano Robledo, Vinicius Carius de Souza, Lana Laene Lima Dias, Lazara Aline Simões Silva, Emerson Campos da Silveira, Claudinei da Silva Souza, Elisandra Silva Sousa, Pedro Alexandre Sodrzeieski, Yoan Camilo Guzman Sarmiento, Elyabe Monteiro de Matos, Thais Castilho de Arruda Falcão, Lilian da Silva Fialho, Valeria Monteze Guimaraes, Lyderson Facio Viccini, Flaviani Gabriela Pierdona, Elisson Romanel, Jim Fouracre, Wagner Campos Otoni, Fabio Tebaldi Silveira Nogueira","doi":"10.1111/nph.20343","DOIUrl":"https://doi.org/10.1111/nph.20343","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Passion flower extrafloral nectaries (EFNs) protrude from leaves and facilitate mutualistic interactions with insects; however, how age cues control EFN growth remains poorly understood.</li>\u0000<li>Here, we examined leaf and EFN morphology and development of two <i>Passiflora</i> species with distinct leaf shapes, and compared the phenotype of these to transgenics with manipulated activity of the age-dependent miR156, which targets several <i>SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE</i> (<i>SPL</i>) transcription factors.</li>\u0000<li>Low levels of miR156 correlated with leaf maturation and EFN formation in <i>Passiflora edulis and P. cincinnata</i>. Accordingly, manipulating miR156 activity affected leaf heteroblasty and EFN development. miR156-overexpressing leaves exhibited less abundant and tiny EFNs in both <i>Passiflora</i> species. EFN abundance remained mostly unchanged when miR156 activity was reduced, but it led to larger EFNs in <i>P. cincinnata</i>. Transcriptome analysis of young leaf primordia revealed that miR156-targeted <i>SPLs</i> may be required to properly express leaf and EFN-associated genes. Importantly, altered miR156 activity impacted sugar profiles of the nectar and modified ecological relationships between EFNs and ants.</li>\u0000<li>Our work provides evidence that the miR156/<i>SPL</i> module indirectly regulates EFN development in an age-dependent manner and that the EFN development program is closely associated with the heteroblastic developmental program of the EFN-bearing leaves.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"6 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信