Science and Engineering of Composite Materials最新文献

筛选
英文 中文
Preparation and application of foamed ceramic panels in interior design 泡沫陶瓷板的制备及其在室内设计中的应用
IF 1.9 4区 材料科学
Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI: 10.1515/secm-2022-0217
B. Wang
{"title":"Preparation and application of foamed ceramic panels in interior design","authors":"B. Wang","doi":"10.1515/secm-2022-0217","DOIUrl":"https://doi.org/10.1515/secm-2022-0217","url":null,"abstract":"Abstract A new type of foam ceramics was prepared with fly ash (CFA). Before sintering, the CFA underwent alkali activation, resulting in an even layer of hydroxy sodalite crystals covering the CFA particles. The pre-treatment of the CFA-alkali-activated material caused it to exhibit a reaction in sintering. The foamed ceramics had the best qualities when sintered at 1,300°C; the leaching toxicity studies of a material used in interior design revealed that during sintering.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42658749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A simulative study on the effect of friction coefficient and angle on failure behaviors of GLARE subjected to low-velocity impact 低速碰撞下摩擦系数和角度对眩光失效行为影响的仿真研究
IF 1.9 4区 材料科学
Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI: 10.1515/secm-2022-0194
Peiyu You, H. Chen, Mingjie Li, Ye Wu
{"title":"A simulative study on the effect of friction coefficient and angle on failure behaviors of GLARE subjected to low-velocity impact","authors":"Peiyu You, H. Chen, Mingjie Li, Ye Wu","doi":"10.1515/secm-2022-0194","DOIUrl":"https://doi.org/10.1515/secm-2022-0194","url":null,"abstract":"Abstract The aim of this paper is to study the effect of friction coefficient and impact angle on the failure behaviors of glass fiber reinforced aluminum laminates (GLARE) under the low-velocity impact (LVI) loading. A methodology is developed in commercial software ABAQUS/Explicit, and its accuracy is verified based on the results of comparison between simulation and experiment. In the simulation, Johnson–Cook flow stress model and surface-based cohesive behavior are carried out to simulate the damage evolution of aluminum alloy layers and delamination at the interface. Further, both the dynamic response history and damage mechanism characterization of these hybrid laminates are presented and compared carefully. Additionally, due to the advantage of simulation, it is accurate and easy to discuss on the evolution of the damage contour consisting of the damage degree of composite and metal layers as well as the interface between them. Finally, the influence rules of friction coefficient and angle on the failure behaviors of GLARE under LVI are drawn clearly.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47939973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient-distributed ZTAp-VCp/Fe45 as new anti-wear composite material and its bonding properties during composite casting 梯度分布ZTAp-VCp/Fe45新型耐磨复合材料及其复合铸造过程中的结合性能
IF 1.9 4区 材料科学
Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI: 10.1515/secm-2022-0200
Lei Fan, Chun Hu, Neng Yang, Xingshuai Fan, Jie Cheng, Xiangming Li
{"title":"Gradient-distributed ZTAp-VCp/Fe45 as new anti-wear composite material and its bonding properties during composite casting","authors":"Lei Fan, Chun Hu, Neng Yang, Xingshuai Fan, Jie Cheng, Xiangming Li","doi":"10.1515/secm-2022-0200","DOIUrl":"https://doi.org/10.1515/secm-2022-0200","url":null,"abstract":"Abstract In this article, gradient-distributed VCp-ZTAp/Fe45 composites were prepared by vacuum sintering, and three-body abrasive wear experiments were carried out to investigate its anti-wear performance. The composite casting of VCp-ZTAp/Fe45 was investigated by using the finite element method and experiments, and the bonding between the Fe45 substrate and 35SiMnCrMoNi steel was fully investigated. Results show the in situ formation of VCp in the VCp-ZTAp/Fe45 composite matrix during vacuum sintering. The anti-wear property of the VCp-ZTAp/Fe45 composite is ca. 7 times that of Hardox450 and NM450 and ca. 8 times of 30SiMn. There forms a solid metallurgical bonding between the Fe45 matrix of VCp-ZTAp/Fe45 and 35SiMnCrMoNi steel, with a ca. 80 μm thickness of the bonding area during the composite casting.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44628516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Durability and microstructure analysis of concrete made with volcanic ash: A review (Part II) 火山灰混凝土耐久性和微观结构分析综述(下)
IF 1.9 4区 材料科学
Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI: 10.1515/secm-2022-0211
J. Ahmad, Fadi Althoey, M. Abuhussain, A. Deifalla, Y. Özkılıç, C. Rahmawati
{"title":"Durability and microstructure analysis of concrete made with volcanic ash: A review (Part II)","authors":"J. Ahmad, Fadi Althoey, M. Abuhussain, A. Deifalla, Y. Özkılıç, C. Rahmawati","doi":"10.1515/secm-2022-0211","DOIUrl":"https://doi.org/10.1515/secm-2022-0211","url":null,"abstract":"Abstract Concrete is the most frequently employed man-made material in modern building construction. Nevertheless, the serviceability of concrete structures has been significantly reduced owing to a variety of durability issues, especially when serving in a non-ideal environment and exposed to internal/external attacks such as chloride penetration, carbonation, sulfate, and so on. Several scholars have performed numerous studies on the strength and microstructure features of volcanic ash (VA) concrete and have discovered encouraging findings. However, since the information is spread, readers find it difficult to evaluate the benefits of VA-based concrete, limiting its applicability. As a result, a detailed study is required that offers the reader an easy approach and highlights all essential facts. The goal of this article (Part Ц) is to conduct a compressive review of the physical and chemical aspects of VA and its impact on concrete durability and microstructure properties. The findings demonstrate that VA considerably improves concrete durability owing to pozzolanic reaction and micro-filling voids in concrete materials. Cost–benefit analysis shows that 10% utilization of VA as cement decreased the overall cost by 30%. The assessment also notes a research gap that must be filled before VA may be utilized in practice.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43088736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A probability characteristic of crack intersecting with embedded microcapsules in capsule-based self-healing materials 胶囊基自愈材料中裂纹与嵌入微胶囊相交的概率特征
IF 1.9 4区 材料科学
Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI: 10.1515/secm-2022-0207
Z. Lv, Mengyan Shi, Jing Yuan, Depeng Chen, Minglei Guo, Tengfei Xiang, Huisu Chen
{"title":"A probability characteristic of crack intersecting with embedded microcapsules in capsule-based self-healing materials","authors":"Z. Lv, Mengyan Shi, Jing Yuan, Depeng Chen, Minglei Guo, Tengfei Xiang, Huisu Chen","doi":"10.1515/secm-2022-0207","DOIUrl":"https://doi.org/10.1515/secm-2022-0207","url":null,"abstract":"Abstract The micro-cracks in a material lead to a reduction in its overall strength and service life. The emerging capsule-based self-healing system provides a new strategy for repairing the cracks, effectively delaying the potential damage of the matrix, and prolonging the service life of composite materials. Determining the optimal size and dosage of microcapsules required to repair cracks in the matrix is essential for the development and design of capsule-based self-healing materials. This paper presents a novel two-dimensional capsule-based self-healing model composite material whose surface is paved by reproducible and random cells and some microcapsules are randomly dispersed in those cells to investigate the rupture behavior of microcapsules forced by growing cracks. An analytical model is proposed from the viewpoint of geometrical probability to express the probability characteristics of the embedded microcapsules stimulated by linear cracks in a two-dimensional capsule-based self-healing model composite. Additionally, the effect of the size and dosage of the embedded microcapsules on the intersection probability is analyzed, and the maximal probability is also found to improve the self-healing efficiency. Finally, the accuracies of these probability values and theoretical solutions are verified via computer simulation, and the results show that the developed model of the geometrical probability of the crack intersection with microcapsules randomly distributed in the cells of the matrix will help to provide a theoretical basis for the quantitative design of capsule-based self-healing materials.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67051194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro-damage analysis and numerical simulation of composite solid propellant based on in situ tensile test 基于原位拉伸试验的复合固体推进剂微损伤分析与数值模拟
IF 1.9 4区 材料科学
Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI: 10.1515/secm-2022-0196
Yongqiang Li, Gaochun Li
{"title":"Micro-damage analysis and numerical simulation of composite solid propellant based on in situ tensile test","authors":"Yongqiang Li, Gaochun Li","doi":"10.1515/secm-2022-0196","DOIUrl":"https://doi.org/10.1515/secm-2022-0196","url":null,"abstract":"Abstract In order to quantitatively analyze the mesoscopic damage process of hydroxyl-terminated polybutadiene composite solid propellant under external load, periodic boundary conditions were applied to the representative volume element model based on sample composition and morphology, the mixed matrix containing aluminum powder was homogenized, and the hyperelastic matrix damage and bilinear/exponential particle–matrix interface cohesive model with initial damage were compiled through the secondary development of Abaqus. At the same time, a data interaction platform was constructed by means of Python and MATLAB, matrix and cohesion parameters were inverted according to the optimization algorithm and experimental data, and the whole process of propellant damage and fracture was simulated from the mesoscopic perspective. The results show that combining the adaptive particle swarm optimization algorithm and the Hooke–Jeeves algorithm can achieve the global optimal parameter inversion in 102 calculations, compared with the single local search algorithm, which can cut about 11% of the objective function values. Considering the matrix damage and the exponential cohesion model with initial damage, the optimal objective function value is 0.01635, which can more accurately simulate the propellant damage and fracture process compared with 0.02136 of a bilinear cohesion model.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44960234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical and tribological properties of C/C–SiC ceramic composites with different preforms 不同预成型体C/C–SiC陶瓷复合材料的力学和摩擦学性能
IF 1.9 4区 材料科学
Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI: 10.1515/secm-2022-0205
Yuqing Peng, Zhiwei Li, Aijun Li, Qifan Wang, R. Bai, Fangzhou Zhang
{"title":"Mechanical and tribological properties of C/C–SiC ceramic composites with different preforms","authors":"Yuqing Peng, Zhiwei Li, Aijun Li, Qifan Wang, R. Bai, Fangzhou Zhang","doi":"10.1515/secm-2022-0205","DOIUrl":"https://doi.org/10.1515/secm-2022-0205","url":null,"abstract":"Abstract The C/C–SiC composites were fabricated by the liquid silicon infiltration method. The mechanical and tribological properties of C/C–SiC composites were assessed and compared based on different C/C densities and the carbon fiber textile architecture. The results demonstrated that the bending and shear strengths of C/C–SiC were lower than those of C/C composites, which resulted from the carbon fibers being corroded during the process of infiltration of liquid silicon. In contrast to C/C composites, the compressive strength of C/C–SiC exhibited higher values due to the presence of SiC ceramics. Moreover, the mechanical strength of C/C composites increased gradually with the increase of the C/C preform density. The tribological properties of various C/C–SiC composites showed a stable friction phase at an intermediate braking stage. When the density of C/C preforms was around 1.78 g/cm3, the C/C–SiC composites exhibited excellent friction coefficients (0.438 and 0.465), and low wear rates (linear and weight wear rates were 0.450 µm/time and 0.123 g/cycle, respectively). Furthermore, the C/C–SiC composites fabricated with non-woven carbon fiber needling preforms showed relatively a higher friction value and wear rate than those of C/C–SiC with PANOF integral C/C preforms. Therefore, C/C–SiC composites have been considered promising friction materials for braking system applications.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49300174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Durability and microstructure study on concrete made with sewage sludge ash: A review (Part Ⅱ) 污泥灰混凝土耐久性及微观结构研究综述(下)
IF 1.9 4区 材料科学
Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI: 10.1515/secm-2022-0202
J. Ahmad, M. Alqurashi, Hani Alanazi, A. Deifalla, A. Yosri
{"title":"Durability and microstructure study on concrete made with sewage sludge ash: A review (Part Ⅱ)","authors":"J. Ahmad, M. Alqurashi, Hani Alanazi, A. Deifalla, A. Yosri","doi":"10.1515/secm-2022-0202","DOIUrl":"https://doi.org/10.1515/secm-2022-0202","url":null,"abstract":"Abstract The quantity of carbon dioxide gas released during the manufacturing and acquisition of raw ingredients determines the sustainability of concrete. Industrial garbage dumping is a critical difficulty that humanity is experiencing because of globalization and the increasing population. Through the efficient use of industrial by products, efforts are being undertaken to lower carbon discharges in the concreting process. It has been recommended by sustainable development goals and standards to use byproducts that have lower embodied energy and carbon emissions. Ash from sewage sludge demonstrates its suitability for use in concrete. However, a compressive assessment is needed to determine the past, present, and future research aspects of using sewage sludge ash (SSA) as a construction material. Therefore, this research is carried out on using SSA as a construction material. All the essential properties such as the physical and chemical properties of SSA, its effect on durability properties, and morphology structure study are the main aspect of this review (Part II). The analysis also highlights the research gap for upcoming exploration which further improved its performance.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44232562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable concrete with partial substitution of paper pulp ash: A review 部分替代纸浆灰的可持续混凝土研究进展
IF 1.9 4区 材料科学
Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI: 10.1515/secm-2022-0193
J. Ahmad, Mohamed Moafak Arbili, A. Deifalla, Abdeltif Salmi, A. Maglad, Fadi Althoey
{"title":"Sustainable concrete with partial substitution of paper pulp ash: A review","authors":"J. Ahmad, Mohamed Moafak Arbili, A. Deifalla, Abdeltif Salmi, A. Maglad, Fadi Althoey","doi":"10.1515/secm-2022-0193","DOIUrl":"https://doi.org/10.1515/secm-2022-0193","url":null,"abstract":"Abstract The paper industry is one of the biggest sources of trash and stands out for its effects on both human health and ecological harmony. However, these waste could also help the building sector become more ecologically friendly. Beyond ecological considerations, modern construction often requires materials to make concrete durable, resisting heavy loads and less harmful environmental influences. This creates opportunities for waste management and practical application. This review provides a detail overview of eco-friendly construction ideas that deal with the practical use of materials that are often discarded (paper pulp ash). The impact they had on the characteristics of the construction material, the best mixture composition, and a discussion of the benefits and drawbacks of the “green” addition received the majority of the attention (paper pulp ash). The essential concrete properties such as consistency, setting time, flowability, compressive strength, flexural strength, tensile strength, and impact strength are reviewed. Furthermore, the cost benefits and environmental benefits of paper pulp ash as construction materials are also discussed. The study concludes by suggesting a line of inquiry for the creation of an environmentally friendly structural material for a sustainable future.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41276890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optimizing bending strength of laminated bamboo using confined bamboo with softwoods 用软木约束竹材优化复合竹材的抗弯强度
IF 1.9 4区 材料科学
Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI: 10.1515/secm-2022-0215
A. Cruz, C. Takeuchi
{"title":"Optimizing bending strength of laminated bamboo using confined bamboo with softwoods","authors":"A. Cruz, C. Takeuchi","doi":"10.1515/secm-2022-0215","DOIUrl":"https://doi.org/10.1515/secm-2022-0215","url":null,"abstract":"Abstract The objective of the study was to improve the stiffness and bending strength of laminated bamboo through confinement with softwood. A total of 144 beams were tested, divided into 6 groups of 24 specimens each. The tests were conducted on specimens of laminated bamboo, wood, and composite sections with different levels of confined bamboo laminate (20, 40, 60, and 80%). The results indicated that the composite exhibited optimal behavior when the ratio of bamboo to wood was between 46 and 54%. Furthermore, the composite demonstrated a bending modulus of elasticity that was 16.6% higher and a modulus of rupture that was 18.3% higher than the values predicted by the mixing rule. A mathematical model was developed to predict the design mechanical properties based on composite thickness. This model was validated through 18 additional bending tests. This new material is an environmentally sustainable alternative that has the potential to be used as beams in buildings, providing improved mechanical performance, reduced weight, and lower manufacturing cost compared to bamboo laminates.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41495929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信