基于理论和数值模型的三点弯曲夹层梁破坏分析

IF 1.9 4区 材料科学 Q3 Materials Science
Zenggui Jin, Wentao Mao, Fengpeng Yang
{"title":"基于理论和数值模型的三点弯曲夹层梁破坏分析","authors":"Zenggui Jin, Wentao Mao, Fengpeng Yang","doi":"10.1515/secm-2022-0224","DOIUrl":null,"url":null,"abstract":"Abstract This article presents a comprehensive study on the failure behavior of foam core sandwich beams under three-point bending using theoretical analysis and finite element methods. A displacement formula for the foam sandwich beam is derived, considering the shear deformation of the foam core. Based on this formula, the deflection is obtained using energy and Rayleigh–Ritz methods. The failure loads of face yielding, core shearing, and indentation are combined to construct a failure mechanism map. The proposed theoretical model is then compared with existing theoretical analyses, demonstrating higher prediction accuracy. To investigate nonlinear damage and size effects, a series of finite element analyses is conducted. The results suggest that increasing the face sheet thickness has a greater impact on the ultimate load capacity, while the foam core thickness is more effective in enhancing bending stiffness.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":"110 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure analysis of sandwich beams under three-point bending based on theoretical and numerical models\",\"authors\":\"Zenggui Jin, Wentao Mao, Fengpeng Yang\",\"doi\":\"10.1515/secm-2022-0224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents a comprehensive study on the failure behavior of foam core sandwich beams under three-point bending using theoretical analysis and finite element methods. A displacement formula for the foam sandwich beam is derived, considering the shear deformation of the foam core. Based on this formula, the deflection is obtained using energy and Rayleigh–Ritz methods. The failure loads of face yielding, core shearing, and indentation are combined to construct a failure mechanism map. The proposed theoretical model is then compared with existing theoretical analyses, demonstrating higher prediction accuracy. To investigate nonlinear damage and size effects, a series of finite element analyses is conducted. The results suggest that increasing the face sheet thickness has a greater impact on the ultimate load capacity, while the foam core thickness is more effective in enhancing bending stiffness.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0224\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/secm-2022-0224","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用理论分析和有限元方法对泡沫芯夹层梁在三点弯曲作用下的破坏行为进行了综合研究。考虑泡沫芯的剪切变形,导出了泡沫夹层梁的位移公式。在此基础上,采用能量法和瑞利-里兹法计算了挠度。结合工作面屈服、岩心剪切、压痕等破坏荷载,构建了破坏机理图。将所提出的理论模型与已有的理论分析进行了比较,结果表明该模型具有较高的预测精度。为了研究非线性损伤和尺寸效应,进行了一系列的有限元分析。结果表明,增加面板厚度对极限承载能力的影响更大,而增加泡沫芯厚度对弯曲刚度的提高更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Failure analysis of sandwich beams under three-point bending based on theoretical and numerical models
Abstract This article presents a comprehensive study on the failure behavior of foam core sandwich beams under three-point bending using theoretical analysis and finite element methods. A displacement formula for the foam sandwich beam is derived, considering the shear deformation of the foam core. Based on this formula, the deflection is obtained using energy and Rayleigh–Ritz methods. The failure loads of face yielding, core shearing, and indentation are combined to construct a failure mechanism map. The proposed theoretical model is then compared with existing theoretical analyses, demonstrating higher prediction accuracy. To investigate nonlinear damage and size effects, a series of finite element analyses is conducted. The results suggest that increasing the face sheet thickness has a greater impact on the ultimate load capacity, while the foam core thickness is more effective in enhancing bending stiffness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Engineering of Composite Materials
Science and Engineering of Composite Materials 工程技术-材料科学:复合
CiteScore
3.10
自引率
5.30%
发文量
0
审稿时长
4 months
期刊介绍: Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信