Halak Shukla, Diana John, Shuvomoy Banerjee, Anand Krishna Tiwari
{"title":"Drug repurposing for neurodegenerative diseases.","authors":"Halak Shukla, Diana John, Shuvomoy Banerjee, Anand Krishna Tiwari","doi":"10.1016/bs.pmbts.2024.03.035","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.03.035","url":null,"abstract":"<p><p>Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"207 ","pages":"249-319"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juni Banerjee, Anand Krishna Tiwari, Shuvomoy Banerjee
{"title":"Drug repurposing for cancer.","authors":"Juni Banerjee, Anand Krishna Tiwari, Shuvomoy Banerjee","doi":"10.1016/bs.pmbts.2024.03.032","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.03.032","url":null,"abstract":"<p><p>In the dynamic landscape of cancer therapeutics, the innovative strategy of drug repurposing emerges as a transformative paradigm, heralding a new era in the fight against malignancies. This book chapter aims to embark on the comprehension of the strategic deployment of approved drugs for repurposing and the meticulous journey of drug repurposing from earlier times to the current era. Moreover, the chapter underscores the multifaceted and complex nature of cancer biology, and the evolving field of cancer drug therapeutics while emphasizing the mandate of drug repurposing to advance cancer therapeutics. Importantly, the narrative explores the latest tools, technologies, and cutting-edge methodologies including high-throughput screening, omics technologies, and artificial intelligence-driven approaches, for shaping and accelerating the pace of drug repurposing to uncover novel cancer therapeutic avenues. The chapter critically assesses the breakthroughs, expanding the repertoire of repurposing drug candidates in cancer, and their major categories. Another focal point of this book chapter is that it addresses the emergence of combination therapies involving repurposed drugs, reflecting a shift towards personalized and synergistic treatment approaches. The expert analysis delves into the intricacies of combinatorial regimens, elucidating their potential to target heterogeneous cancer populations and overcome resistance mechanisms, thereby enhancing treatment efficacy. Therefore, this chapter provides in-depth insights into the potential of repurposing towards bringing the much-needed big leap in the field of cancer therapeutics.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"207 ","pages":"123-150"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drug repurposing for parasitic protozoan diseases.","authors":"Vijayasurya, Swadha Gupta, Smit Shah, Anju Pappachan","doi":"10.1016/bs.pmbts.2024.05.001","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.05.001","url":null,"abstract":"<p><p>Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"207 ","pages":"23-58"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong-Quan Duong, Thi-Hue Nguyen, Minh-Cong Hoang, Van-Lang Ngo, Van-Thu Le
{"title":"RNA therapeutics for β-thalassemia.","authors":"Hong-Quan Duong, Thi-Hue Nguyen, Minh-Cong Hoang, Van-Lang Ngo, Van-Thu Le","doi":"10.1016/bs.pmbts.2023.12.006","DOIUrl":"10.1016/bs.pmbts.2023.12.006","url":null,"abstract":"<p><p>β-thalassemia is an autosomal recessive disease, caused by one or more mutations in the β-globin gene that reduces or abolishes β-globin chain synthesis causing an imbalance in the ratio of α- and β-globin chain. Therefore, the ability to target mutations will provide a good result in the treatment of β-thalassemia. RNA therapeutics represents a promising class of drugs inclusive antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and APTAMER have investigated in clinical trials for treatment of human diseases as β-thalassemia; Especially, ASO therapeutics can completely treat β-thalassemia patients by the way of making ASO infiltrating through erythrocyte progenitor cells, migrating to the nucleus and hybridizing with abnormal splicing sites to suppress an abnormal splicing pattern of β-globin pre-mRNA. As a result, the exactly splicing process is restored to increase the expression of β-globin which increases the amount of mature hemoglobin of red blood cells of β-thalassemia patients. Furthermore, current study demonstrates that RNA-based therapeutics get lots of good results for β-thalassemia patients. Then, this chapter focuses on current advances of RNA-based therapeutics and addresses current challenges with their development and application for treatment of β-thalassemia patients.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"204 ","pages":"97-107"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arpita Poddar, Farah Ahmady, Prashanth Prithviraj, Rodney B Luwor, Ravi Shukla, Shakil Ahmed Polash, Haiyan Li, Suresh Ramakrishna, George Kannourakis, Aparna Jayachandran
{"title":"Advances in CRISPR/Cas systems-based cell and gene therapy.","authors":"Arpita Poddar, Farah Ahmady, Prashanth Prithviraj, Rodney B Luwor, Ravi Shukla, Shakil Ahmed Polash, Haiyan Li, Suresh Ramakrishna, George Kannourakis, Aparna Jayachandran","doi":"10.1016/bs.pmbts.2024.07.005","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.005","url":null,"abstract":"<p><p>Cell and gene therapy are innovative biomedical strategies aimed at addressing diseases at their genetic origins. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) systems have become a groundbreaking tool in cell and gene therapy, offering unprecedented precision and versatility in genome editing. This chapter explores the role of CRISPR in gene editing, tracing its historical development and discussing biomolecular formats such as plasmid, RNA, and protein-based approaches. Next, we discuss CRISPR delivery methods, including viral and non-viral vectors, followed by examining the various engineered CRISPR variants for their potential in gene therapy. Finally, we outline emerging clinical applications, highlighting the advancements in CRISPR for breakthrough medical treatments.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"208 ","pages":"161-183"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P Soma Yasaswi, Harsh P Nijhawan, Bala Prabhakar, Shilpee Dutt, Khushwant S Yadav
{"title":"Emerging drug delivery systems to alter tumor immunosuppressive microenvironment: Overcoming the challenges in immunotherapy for glioblastoma.","authors":"P Soma Yasaswi, Harsh P Nijhawan, Bala Prabhakar, Shilpee Dutt, Khushwant S Yadav","doi":"10.1016/bs.pmbts.2024.04.006","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.04.006","url":null,"abstract":"<p><p>Glioblastoma (GBM) is a highly proliferative, lethal cancer of the brain. The median survival at eight months is ca. 6.8%. Resistance towards the anti-glioblastoma drug temozolomide (TMZ), recurrence of cancer cells, blood-tumor brain barrier (BTBB), blood-brain barrier (BBB), and tumor immunosuppression are major challenges in treating GBM. Drug delivery systems employing TMZ and other anti-cancer drugs and combination therapy (temozolomide with immunotherapeutics) are under pre-clinical and clinical studies, respectively. Immunotherapeutics have emerged as a dominant mechanism to silence tumor development and dissemination. Paradoxically, immunotherapy has witnessed failure in treating GBM. This is due to the unique immunosuppressive microenvironment in GBM. Future immunotherapeutics with inherent tumor environment-modulating properties have to be identified. In this review, we discuss recent delivery systems and devices engineered to deliver immunotherapeutics with the ability to alter/silence tumor immune suppression.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"209 ","pages":"165-182"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehdi Sanati, Amir R Afshari, Seyed Sajad Ahmadi, Prashant Kesharwani, Amirhossein Sahebkar
{"title":"Advances in liposome-based delivery of RNA therapeutics for cancer treatment.","authors":"Mehdi Sanati, Amir R Afshari, Seyed Sajad Ahmadi, Prashant Kesharwani, Amirhossein Sahebkar","doi":"10.1016/bs.pmbts.2023.12.010","DOIUrl":"10.1016/bs.pmbts.2023.12.010","url":null,"abstract":"<p><p>Liposomal drug delivery systems stand as versatile therapeutic platforms for precisely targeting related elements in cancerous tissues owing to their intrinsic passive and acquired active targeting capabilities and exceptional compatibility with physiologic environments. When the capacity of liposomes as nanocarriers is combined with the revolutionary potential of RNA therapies in affecting undruggable targets, the outcome would be promising drug candidates as game-changers in the cancer treatment arena. However, optimizing liposome composition, physicochemical properties, and surface chemistry is paramount to maximizing their pharmacokinetic and pharmacodynamic attributes. This review highlighted the potential of liposomes as nanovehicles for RNA therapeutics through a literature review and looked at the most recent preclinical and clinical advancements in utilizing liposomal RNA therapeutics for cancer management. Notably, the discovery of novel targets, advancements in liposome engineering, and organizing well-planned clinical trials would help uncover the incredible potential of these nanotherapeutics in cancer patients.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"204 ","pages":"177-218"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Negin Parsamanesh, Mohadeseh Poudineh, Haleh Siami, Alexandra E Butler, Wael Almahmeed, Amirhossein Sahebkar
{"title":"RNA interference-based therapies for atherosclerosis: Recent advances and future prospects.","authors":"Negin Parsamanesh, Mohadeseh Poudineh, Haleh Siami, Alexandra E Butler, Wael Almahmeed, Amirhossein Sahebkar","doi":"10.1016/bs.pmbts.2023.12.009","DOIUrl":"10.1016/bs.pmbts.2023.12.009","url":null,"abstract":"<p><p>Atherosclerosis represents a pathological state that affects the arterial system of the organism. This chronic, progressive condition is typified by the accumulation of atheroma within arterial walls. Modulation of RNA molecules through RNA-based therapies has expanded the range of therapeutic options available for neurodegenerative diseases, infectious diseases, cancer, and, more recently, cardiovascular disease (CVD). Presently, microRNAs and small interfering RNAs (siRNAs) are the most widely employed therapeutic strategies for targeting RNA molecules, and for regulating gene expression and protein production. Nevertheless, for these agents to be developed into effective medications, various obstacles must be overcome, including inadequate binding affinity, instability, challenges of delivering to the tissues, immunogenicity, and off-target toxicity. In this comprehensive review, we discuss in detail the current state of RNA interference (RNAi)-based therapies.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"204 ","pages":"1-43"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNA therapeutics for kidney injury.","authors":"Pouya Goleij, Pantea Majma Sanaye, Aryan Rezaee, Mohammad Amin Khazeei Tabari, Reza Arefnezhad, Hossein Motedayyen","doi":"10.1016/bs.pmbts.2023.12.007","DOIUrl":"10.1016/bs.pmbts.2023.12.007","url":null,"abstract":"<p><p>RNA therapy involves utilizing RNA-based molecules to control biological pathways, aiming to cure specific diseases. As our understanding of RNA functions and their roles has expanded, the application of RNA therapies has broadened to target various therapeutic points. This approach holds promise for treating a range of diseases, including kidney diseases. Therapeutic RNA can be employed to target specific genes or pathways implicated in the development of kidney conditions, such as inflammation, fibrosis, and oxidative stress. This review highlights the therapeutic potential of RNA-based therapies across different types of kidney diseases, encompassing infection, inflammation, nephrotoxicity, and ischemia/reperfusion injury. Furthermore, studies have pinpointed the specific kidney cells involved in RNA therapy. To address challenges hindering the potential impact of RNA-based drugs on their targets, nanotechnology is integrated, and RNA-loaded vehicles with ligands are explored for more efficient outcomes.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"204 ","pages":"69-95"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An overview and potential of CRISPR-Cas systems for genome editing.","authors":"Karan Murjani, Renu Tripathi, Vijai Singh","doi":"10.1016/bs.pmbts.2024.07.009","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.009","url":null,"abstract":"<p><p>Genome editing involves altering of the DNA in organisms including bacteria, plants, and animals using molecular scissors that helps in treatment and diagnosis of various diseases. Genome editing technology is exponentially growing and have been developed for enabling precise genomic alterations and the addition, removal, and correction of genes. These modifications begin with the creation of double-stranded breaks (DSBs) that is generated by nucleases and can be joined through homology-directed repair (HDR) or non-homologous end-joining (NHEJ). NHEJ is quick but increases mutation chances due to deletions and insertions of nucleotides at the break site, while HDR uses homologous templates for precise repair and targeted DNA specific to the gene or sequence. Other methods such as zinc-finger protein is a transcription factor that binds with DNA and binds specific to that sequence, which uniquely recognise 3-base pairs of DNA. TALENs consists of two domains: TALE domain, a transcription activator and FokI that is a restriction endonuclease that cuts the DNA at specific sites. CRISPR-Cas systems are clustered regularly interspersed short palindromic repeats present in various bacterial species. These sequences activate RNA-guided DNA cleavage, aiding in the development of an adaptive immune defence against foreign DNA. CRISPR-Cas9 is widely used for genome editing, regulation, diagnostic and many.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"208 ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}