{"title":"Simultaneous Resonant and Broadband Detection of Ultralight Dark Matter and High-Frequency Gravitational Waves via Cavities and Circuits.","authors":"Yifan Chen,Chunlong Li,Yuxin Liu,Jing Shu,Yuting Yang,Yanjie Zeng","doi":"10.1088/1361-6633/add050","DOIUrl":"https://doi.org/10.1088/1361-6633/add050","url":null,"abstract":"Electromagnetic resonant systems, such as cavities and LC circuits, are widely used to detect ultralight boson dark matter and high-frequency gravitational waves. However, the narrow bandwidth of single-mode resonators necessitates multiple scan steps to cover broad frequency ranges. By incorporating a network of auxiliary modes via beam-splitter-type and non-degenerate parametric couplings, we enable broadband detection with an effective bandwidth of each scan matching the order of the resonant frequency, while maintaining a strong signal response. In heterodyne upconversion detection, where a background cavity mode transitions into another due to a potential background source, multiple orders of the source frequency can be probed with high sensitivity without tuning the cavity frequency. Consequently, our method allows for significantly deeper exploration of the parameter space within the same integration time compared to single-mode detection.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"35 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143876466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diffusive first-order phase transition: nucleation, growth and coarsening in solids.","authors":"David Simeone,Olivier Tissot,Laurence Luneville","doi":"10.1088/1361-6633/adcbbf","DOIUrl":"https://doi.org/10.1088/1361-6633/adcbbf","url":null,"abstract":"The phenomena of nucleation and growth, which fall into the category of first-order phase transitions, are of great importance. They are present everywhere in our daily lives. They enable us to understand and model a vast number of phenomena, from the formation of raindrops, to the gelling of polymers, the evolution of a virus population and the formation of galaxies. Surprisingly, this whole range of phenomena can be described by two seemingly antagonistic approaches: classical nucleation theory, which highlights the atomistic approach of the diffusion process, and the phase-field approach, which erases the discrete nature of the diffusion process. 
Although there is an huge quantity of articles and review papers dealing with the problem of first-order phase transition, the subject is so important and vast that it is very difficult to provide nowadays exhaustive syntheses on the subject. The revival over the past 20 years in the condensed matter world of phase field approaches such as phase field crystal, or the recent development of optimization methods such as gentle ascend dynamics, as well as the emergence of atom probe tomography (APT), have enabled us to better understand the links between these antagonistic approaches, and above all to provide new experimental results to test the limits of both. 
This renewal has motivated the writing of this review, both to take stock of current knowledge on these two approaches. This review has two distinct objectives: summarizing generic previous models applies to discuss the nucleation, the growth and the coarsening processes. Despite some reviews already exist on these different subject, few of them present the different logical links between these models and their limitations, unifying them within the framework of the theory of macroscopic fluctuations, which has been developed over the last 20 years. In particular, we present the extension of the Cahn-Hilliard formalism to model the nucleation and growth process and we discuss the relevance of the notion of pseudo-spinodal and discuss. Such an extension allows interpreting experiments performed fat from the solubility limit and the spinodal line. Finally, this work proposes some clues to make this unified approach more predictive.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"21 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143824778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xianglin Hao, Ke Yin, Shiqing Cai, Jianlong Zou, Ruibin Wang, Xikui Ma, Chi Kong Tse and Tianyu Dong
{"title":"Dispersive gains enhance wireless power transfer with asymmetric resonance","authors":"Xianglin Hao, Ke Yin, Shiqing Cai, Jianlong Zou, Ruibin Wang, Xikui Ma, Chi Kong Tse and Tianyu Dong","doi":"10.1088/1361-6633/ada637","DOIUrl":"https://doi.org/10.1088/1361-6633/ada637","url":null,"abstract":"Parity-time (PT) symmetry is a fundamental concept in non-Hermitian physics that has recently gained attention for its potential in engineering advanced electronic systems and achieving robust wireless power transfer (WPT) even in the presence of disturbances, through the incorporation of nonlinearity. However, the current PT-symmetric scheme falls short of achieving the theoretical maximum efficiency of WPT and faces challenges when applied to non-resistive loads. In this study, we propose a theoretical framework and provide experimental evidence demonstrating that asymmetric resonance, based on dispersive gain, can greatly enhance the efficiency of WPT beyond the limits of symmetric approaches. By leveraging the gain spectrum interleaving resulting from dispersion, we observe a mode switching phenomenon in asymmetric systems similar to the symmetry-breaking effect. This phenomenon reshapes the distribution of resonance energy and enables more efficient WPT compared to conventional methods. Our findings open up new possibilities for harnessing dispersion effects in various domains such as electronics, microwaves, and optics. This work represents a significant step towards exploiting dispersion as a means to optimize WPT and lays the foundation for future advancements in these fields.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"49 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Antonio Marín Guzmán,Paul Erker,Simone Gasparinetti,Marcus Huber,Nicole Yunger Halpern
{"title":"Key Issues Review: Useful autonomous quantum machines.","authors":"José Antonio Marín Guzmán,Paul Erker,Simone Gasparinetti,Marcus Huber,Nicole Yunger Halpern","doi":"10.1088/1361-6633/ad8803","DOIUrl":"https://doi.org/10.1088/1361-6633/ad8803","url":null,"abstract":"Controlled quantum machines have matured significantly. A natural next step is to increasingly grant them autonomy, freeing them from time-dependent external control. For example, autonomy could pare down the classical control wires that heat and decohere quantum computers; and an autonomous quantum refrigerator recently reset superconducting qubits to near their ground states, as is necessary before a computation. Which fundamental conditions are necessary for realizing useful autonomous quantum machines? Inspired by recent quantum thermodynamics and chemistry, we posit conditions analogous to DiVincenzo's criteria for quantum computing. Furthermore, we illustrate the criteria with multiple autonomous quantum machines (refrigerators, computers, clocks, etc.) and multiple candidate platforms (neutral atoms, molecules, superconducting qubits, etc.). Our criteria are intended to foment and guide the development of useful autonomous quantum machines.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"31 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent developments in tornado theory and observations.","authors":"Richard Rotunno,Howard Bruce Bluestein","doi":"10.1088/1361-6633/ad7f6a","DOIUrl":"https://doi.org/10.1088/1361-6633/ad7f6a","url":null,"abstract":"This article critically reviews research on tornado theory and observations over the last decade. From the theoretical standpoint, the major advances have come through improved numerical-simulation models of supercell convective storms, the tornado's parent circulation. These simulations are carried out on a large domain (to capture the supercell's circulation system), but with high grid resolution and improved representations of sub-grid physics (to capture the tornado). These simulations offer new insights into how and why tornadoes form in some supercells, but not others. Observational advances have come through technological improvements of mobile Doppler radars capable of rapid scanning and dual-polarization measurements, which offer a much more accurate view of tornado formation, tornado structure, and the tornado's place within its parent supercell.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"57 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive review of quantum machine learning: from NISQ to fault tolerance.","authors":"Yunfei Wang,Junyu Liu","doi":"10.1088/1361-6633/ad7f69","DOIUrl":"https://doi.org/10.1088/1361-6633/ad7f69","url":null,"abstract":"Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"8 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Produit,Jerome Kasparian,Farhad Rachidi-Haeri,Marcos Rubinstein,Aurelien Houard,Jean-Pierre Wolf
{"title":"Physics and technology of Laser Lightning Control.","authors":"Thomas Produit,Jerome Kasparian,Farhad Rachidi-Haeri,Marcos Rubinstein,Aurelien Houard,Jean-Pierre Wolf","doi":"10.1088/1361-6633/ad7bc8","DOIUrl":"https://doi.org/10.1088/1361-6633/ad7bc8","url":null,"abstract":"The recent development of high average, high peak power lasers has revived the effort of using lasers as a potential tool to influence natural lightning. Although impressive, the current progress in laser lightning control technology may only be the beginning of a new area involving a positive feedback between powerful laser development and atmospheric research. In this review paper, we critically evaluate the past, present and future of Laser Lightning Control (LLC), considering both its technological and scientific significance in atmospheric research.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"13 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Zhou,Jing-Wei Wang,Lian-Zhen Cao,Guang-Hui Wang,Zeyun Shi,Dong Yan Lü,Hai-Bo Huang,Chang-Sheng Hu
{"title":"Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics.","authors":"Yuan Zhou,Jing-Wei Wang,Lian-Zhen Cao,Guang-Hui Wang,Zeyun Shi,Dong Yan Lü,Hai-Bo Huang,Chang-Sheng Hu","doi":"10.1088/1361-6633/ad797d","DOIUrl":"https://doi.org/10.1088/1361-6633/ad797d","url":null,"abstract":"The emph{chirality-controlled two-mode Lipkin-Meshkov-Glick (LMG) models} are mimicked in a potential hybrid quantum system,
with respect to two ensembles of solid-state spins coupled to a pair of interconnected surface-acoustic-wave (SAW) cavities, respectively. Assisted by the dichromatic classical optical drives with chiral designs, this proposal can simulate the two-mode LMG type long-range spin-spin interactions with a left-right asymmetry. For applications, this unconventional LMG model can not only engineer both ensembles of collective spins into the two-mode spin-squeezed (TMSS) states, but also simulate the fresh quantum critical phenomenon and time-crystal behaviours, and so on. Because this acoustic-based system can give rise to ion-trap-like interactions without any additional trap technique in principle, it is believed that our work can be considered a fresh attempt at realizing the chiral quantum manipulation of spin-spin interactions by using acoustic hybrid systems.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"8 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marzena Rams-Baron, Alfred Błażytko, Karolina Jurkiewicz, Piotr Lodowski, Maria Książek, Joachim Kusz, Witold Mozga, Marta Fordymacka, Mahshid Teymouri, Julia Krzywik and Marian Paluch
{"title":"Image of the solid-state rotary motion encoded in the dielectric response","authors":"Marzena Rams-Baron, Alfred Błażytko, Karolina Jurkiewicz, Piotr Lodowski, Maria Książek, Joachim Kusz, Witold Mozga, Marta Fordymacka, Mahshid Teymouri, Julia Krzywik and Marian Paluch","doi":"10.1088/1361-6633/ad7288","DOIUrl":"https://doi.org/10.1088/1361-6633/ad7288","url":null,"abstract":"The future development of advanced molecular systems with controlled rotation requires the development of an effective methodology for assessing the rotational performance of artificial machine components. We identified two patterns of the dielectric behavior for polar rotators in a static non-polar framework of sizable crystal showing relations between the spectral and molecular-level features of solid-state rotary motion. Various functionalization of phenylene rotors with a fluorine atom(s) changed rotational performance from high to low with rotational barriers ranging from 6.06 to 11.84 kcal mol−1. The meta-F-substitution favored rotator-rotator contacts allowing for the implementation of fast rotary motion. Contrary, the presence of rotator-stator contacts inhibited independent rotator dynamics leading to opposite spectral behavior in terms of temperature evolution of loss peak amplitude. Our observations, supported by an analysis based on an asymmetric double well-potential model, show that easily noticeable spectral differences encoded some molecular-level information important for the implementation of rotary motion.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"15 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guolong Zhu, Lijuan Gao, Yihang Sun, Wenjie Wei, Li-Tang Yan
{"title":"Non-equilibrium structural and dynamic behaviors of active polymers in complex and crowded environments","authors":"Guolong Zhu, Lijuan Gao, Yihang Sun, Wenjie Wei, Li-Tang Yan","doi":"10.1088/1361-6633/ad3e11","DOIUrl":"https://doi.org/10.1088/1361-6633/ad3e11","url":null,"abstract":"Active matter systems, which convert internal chemical energy or energy from the environment into directed motion, are ubiquitous in nature and exhibit a range of emerging non-equilibrium behaviors. However, most of the current works on active matter have been devoted to particles, and the study of active polymers has only recently come into the spotlight due to their prevalence within living organisms. The intricate interplay between activity and conformational degrees of freedom gives rise to novel structural and dynamical behaviors of active polymers. Research in active polymers remarkably broadens diverse concepts of polymer physics, such as molecular architecture, dynamics, scaling and so on, which is of significant importance for the development of new polymer materials with unique performance. Furthermore, active polymers are often found in strongly interacting and crowded systems and in complex environments, so that the understanding of this behavior is essential for future developments of novel polymer-based biomaterials. This review thereby focuses on the study of active polymers in complex and crowded environments, and aims to provide insights into the fundamental physics underlying the adaptive and collective behaviors far from equilibrium, as well as the open challenges that the field is currently facing.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"43 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140640534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}