{"title":"Certification of genuinely entangled subspaces of the five qubit code via robust self-testing.","authors":"Yu Guo,Hao Tang,Jiaxuan Zhang,Jiale Miao,Xiao-Min Hu,Wu Yu-Chun,GuoPing Guo,Yun-Feng Huang,Chuan-Feng Li,Guang-Can Guo,Bi-Heng Liu","doi":"10.1088/1361-6633/add560","DOIUrl":null,"url":null,"abstract":"Self-testing provides a device-independent framework for certifying quantum properties based solely on input-output statistics while treating quantum devices as black boxes. It has evolved significantly from its origins in bipartite systems to applications in multipartite entanglement and, more recently, genuinely entangled subspaces. Notably, It has been revealed that the logical subspaces of numerous stabilizer quantum error correction codes are exclusively composed of genuinely multipartite entangled states, opening new avenues for developing device-independent tools to characterize these subspaces. In this work, we leverage the self-testing technique to certify genuinely entangled logical subspaces within the five-qubit code using both photonic and superconducting platforms. This is achieved by preparing informationally complete logical states, simulating Pauli errors on a physical qubit, and testing several stabilizer-formalized Bell inequalities. Our certification is supported by an extractability measure of at least $0.828\\pm0.006$ and $0.621\\pm0.007$ for the photonic and superconducting systems, respectively. Our results demonstrate the feasibility of device-independent certification of general entangled quantum structures in experimental settings, extending beyond quantum states and quantum measurements.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"48 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/add560","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Self-testing provides a device-independent framework for certifying quantum properties based solely on input-output statistics while treating quantum devices as black boxes. It has evolved significantly from its origins in bipartite systems to applications in multipartite entanglement and, more recently, genuinely entangled subspaces. Notably, It has been revealed that the logical subspaces of numerous stabilizer quantum error correction codes are exclusively composed of genuinely multipartite entangled states, opening new avenues for developing device-independent tools to characterize these subspaces. In this work, we leverage the self-testing technique to certify genuinely entangled logical subspaces within the five-qubit code using both photonic and superconducting platforms. This is achieved by preparing informationally complete logical states, simulating Pauli errors on a physical qubit, and testing several stabilizer-formalized Bell inequalities. Our certification is supported by an extractability measure of at least $0.828\pm0.006$ and $0.621\pm0.007$ for the photonic and superconducting systems, respectively. Our results demonstrate the feasibility of device-independent certification of general entangled quantum structures in experimental settings, extending beyond quantum states and quantum measurements.
期刊介绍:
Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.