Resource Geology最新文献

筛选
英文 中文
Overprinting porphyry‐type veinlets on the intrusive rocks and phreatomagmatic breccias in the Southwest prospect, southwestern Sto. Tomas II (Philex), Baguio District, Philippines 西南远景区侵入岩与渗透岩浆角砾岩上的套印斑岩型脉脉。托马斯二世(Philex),碧瑶区,菲律宾
IF 1.4 4区 地球科学
Resource Geology Pub Date : 2020-10-13 DOI: 10.1111/rge.12242
Avriel Venis Literal Cirineo, A. Imai, R. Takahashi, Redempta P. Baluda, N. Oliveros, V. B. Maglambayan, Roy Ronald C. Luis, Maria Lourdes M. Faustino, Jacky P. Almadin
{"title":"Overprinting porphyry‐type veinlets on the intrusive rocks and phreatomagmatic breccias in the Southwest prospect, southwestern Sto. Tomas II (Philex), Baguio District, Philippines","authors":"Avriel Venis Literal Cirineo, A. Imai, R. Takahashi, Redempta P. Baluda, N. Oliveros, V. B. Maglambayan, Roy Ronald C. Luis, Maria Lourdes M. Faustino, Jacky P. Almadin","doi":"10.1111/rge.12242","DOIUrl":"https://doi.org/10.1111/rge.12242","url":null,"abstract":"The Southwest prospect is located at the southwestern periphery of the Sto. Tomas II porphyry copper–gold deposit in the Baguio District, northwestern Luzon, Philippines. The Southwest prospect hosts a copper‐gold mineralization related to a complex of porphyry intrusions, breccia facies, and overlapping porphyry‐type veinlets emplaced within the basement Pugo metavolcanics rocks and conglomerates of the Zigzag Formation. The occurrences of porphyry‐type veinlets and potassic alteration hosted in the complex are thought to be indications of the presence of blind porphyry deposits within the Sto. Tomas II vicinity. The complex is composed of at least four broadly mineralogically similar dioritic intrusive rocks that vary in texture and alteration type and intensity. These intrusions were accompanied with at least five breccia facies that were formed by the explosive brecciation, induced by the magmatic–hydrothermal processes and phreatomagmatic activities during the emplacement of the various intrusions. Hydrothermal alteration assemblages consisting of potassic, chlorite–magnetite, propylitic and sericite–chlorite alteration, and contemporaneous veinlet types were developed on the host rocks. Elevated copper and gold grades correspond to (a) chalcopyrite–bornite assemblage in the potassic alteration in the syn‐mineralization early‐mineralization diorite (EMD) and contemporaneous veinlets and (b) chalcopyrite‐rich mineralization associated with the chalcopyrite–magnetite–chlorite–actinolite±sericite veinlets contemporaneous with the chlorite–magnetite alteration. Erratic remarkable concentrations of gold were also present in the late‐mineralization Late Diorite (LD). High XMg of calcic amphiboles (>0.60) in the intrusive rocks indicate that the magmas have been oxidizing since the early stages of crystallization, while a gap in the composition of Al between the rim and the cores of the calcic amphiboles in the EMD and LD indicate decompression at some point during the crystallization of these intrusive rocks. Fluid inclusion microthermometry suggests the trapping of immiscible fluids that formed the potassic alteration, associated ore mineralization, and sheeted quartz veinlets. The corresponding formation conditions of the shallower and deeper quartz veinlets were estimated at pressures of 50 and 30 MPa and temperatures of 554 and 436°C at depths of 1.9 and 1.1 km. Temperature data from the chlorite indicate that the chalcopyrite‐rich mineralization associated with the chlorite–magnetite alteration was formed at a much lower temperature (ca. 290°C) than the potassic alteration. Evidence from the vein offsetting matrix suggests multiple intrusions within the EMD, despite the K‐Ar ages of the potassic alteration in EMD and hornblende in the LD of about the same age at 3.5 ± 0.3 Ma. The K‐Ar age of the potassic alteration was likely to be thermally reset as a result of the overprinting hydrothermal alteration. The constrained K‐Ar ages also indicate","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81962952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Geochronology and S–Pb–O–H isotopic constraints on the generation of the Luoyang Fe deposit in southwest Fujian Province, SE China 闽西南洛阳铁矿成矿的年代学及S-Pb-O-H同位素约束
IF 1.4 4区 地球科学
Resource Geology Pub Date : 2020-10-06 DOI: 10.1111/rge.12247
Sen Wang, Da Zhang, Tengda Yu, Ganguo Wu, Y. Di, Yaoyao Zhang, Jimin Yao
{"title":"Geochronology and S–Pb–O–H isotopic constraints on the generation of the Luoyang Fe deposit in southwest Fujian Province, SE China","authors":"Sen Wang, Da Zhang, Tengda Yu, Ganguo Wu, Y. Di, Yaoyao Zhang, Jimin Yao","doi":"10.1111/rge.12247","DOIUrl":"https://doi.org/10.1111/rge.12247","url":null,"abstract":"The Luoyang Fe polymetallic deposit is a well‐known Makeng‐type ore deposit in a late Paleozoic basin in southwest Fujian, southeast China. To investigate the generation of Makeng‐type Fe deposits, we conducted an integrated study of geochronology and S–Pb–O–H isotope compositions of the Luoyang Fe deposit. The LA–ICP–MS zircon U–Pb ages of the granite and Re–Os ages of the molybdenite suggest that the emplacement of the granite was coeval with the mineralization of the Luoyang deposit at 133–131 Ma. The H–O and S–Pb isotope compositions indicate that the metallogenic material of the Luoyang deposit had a magmatic hydrothermal source, and was derived mainly from the upper crust with a low degree of contamination of mantle material. The Pb isotope analyses of the ore minerals show that the Luoyang Fe deposit formed in an orogenic setting.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75942772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Geochemical characteristics of gold mineralization of the Huai Kham On deposit, Sukhothai Fold Belt, Northern Thailand 泰国北部素可泰褶皱带淮坎安金矿化地球化学特征
IF 1.4 4区 地球科学
Resource Geology Pub Date : 2020-09-29 DOI: 10.1111/rge.12246
L. Tangwattananukul, D. Ishiyama, P. Charusiri
{"title":"Geochemical characteristics of gold mineralization of the Huai Kham On deposit, Sukhothai Fold Belt, Northern Thailand","authors":"L. Tangwattananukul, D. Ishiyama, P. Charusiri","doi":"10.1111/rge.12246","DOIUrl":"https://doi.org/10.1111/rge.12246","url":null,"abstract":"The Huai Kham On gold deposit is located in the central part of the Sukhothai Fold Belt, northern Thailand. The Sukhothai Fold Belt represents an accretionary complex formed by subduction and collision between the Indochina and Sibumasu Terranes. There are many small gold deposits in the Sukhothai Fold Belt; however, the styles and formation environments of those gold deposits are not clear. The geology of the Huai Kham On deposit consists of volcanic and volcanosedimentary rocks, limestone, and low‐grade metamorphic rocks of Carboniferous to Triassic age. Gold‐bearing quartz veins are hosted by volcanic and volcanosedimentary rocks. The quartz veins can be divided into four stages. The mineral assemblage of the gold‐bearing quartz veins of Stages I and II comprises quartz, calcite, illite, pyrite, native gold, galena, chalcopyrite, and sphalerite. Quartz veins of Stage III consist of microcrystalline quartz, dolomite, calcite, pyrite, native gold, and chalcopyrite. Veins of Stage IV consist of calcite, dolomite, chlorite, and quartz. Fluid inclusions in quartz veins are classified into liquid‐rich two‐phase (Types IA and IB), carbonic‐aqueous (Type II), and carbonic (Type III) fluid inclusions. The homogenization temperatures of Types IA and II fluid inclusions that are related to the gold‐bearing quartz veins from Stages I to III ranged from 240° to 280°C. The δ18O values of quartz veins of Stages I to III range from +12.9 to +13.4‰, suggesting the presence of a homogeneous hydrothermal solution without temperature variation such as a decrease of temperature during the formation of gold‐bearing quartz veins from Stages I to III in the Huai Kham On gold deposit. Based on the calculated formation temperature of 280°C, the δ18O values of the hydrothermal solution that formed the gold‐bearing quartz veins range from +3.2 to +3.7‰, which falls into the range of metamorphic waters. The gold‐bearing quartz veins of the Huai Kham On deposit are interpreted to be the products of metamorphic water.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82051328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Early Miocene metallogenic event formed the Bosawa low‐sulfidation epithermal gold deposit, Northeast Japan arc 早中新世成矿事件形成了日本东北弧渤泽低硫化浅成热液金矿床
IF 1.4 4区 地球科学
Resource Geology Pub Date : 2020-09-21 DOI: 10.1111/rge.12248
Teruhiro Suzuki, Shota Satori, Yuho Fujimaki, Yasushi Watanabe
{"title":"Early Miocene metallogenic event formed the Bosawa low‐sulfidation epithermal gold deposit, Northeast Japan arc","authors":"Teruhiro Suzuki, Shota Satori, Yuho Fujimaki, Yasushi Watanabe","doi":"10.1111/rge.12248","DOIUrl":"https://doi.org/10.1111/rge.12248","url":null,"abstract":"There are a number of epithermal Au‐Ag deposits in the Tohoku region of the Northeast Japan arc; however, these deposits have undergone limited exploration for over the past seven decades. This reconnaissance research study of the Bosawa deposit in Akita Prefecture was conducted to support future gold exploration in the Tohoku region. The Bosawa deposit is a vein‐type Au‐Ag deposit, with a production of 42,486 t of ore at 7.01 g/t Au and 14.9 g/t Ag recorded for the period from 1936 to 1957; mining started in the 18th century. The deposit consists of the Ohgiri vein system, which is hosted in felsic volcanic rocks of the Early Miocene Katsurabuchi Formation. The study included geological prospecting, ore description, K‐Ar dating, and fire assay analyses. The deposit is characterized by (a) strongly silicified host lapilli tuff fringed by pyrite‐adularia‐illite alteration; (b) presence of sulfide‐poor banded quartz veins with adularia; (c) abundance of bladed quartz in veins, pseudomorphs after bladed calcite; (d) presence of colloform opal texture in veins; and (e) simple ore mineralogy consisting of gold and argentite. These characteristics are typical of low‐sulfidation epithermal Au deposits. The K‐Ar age of adularia (19.33 ± 0.45 Ma) indicates that mineralization at Bosawa is distinctly older than the ages of other epithermal deposits in the Tohoku region but similar to the age of the initial mineralization episode of the Sado and Tsurushi deposits (24.4–22.1 Ma), Japan's second largest gold producer. This mineralization age coincides with the start of rifting of the Northeast Japan arc and separation from the Asian continent. As the felsic rocks related to this rifting event are widespread in the arc, and some are associated with epithermal gold deposits, the confirmation of typical low‐sulfidation style of mineralization in the Early Miocene provides evidence for a previously unrecognized metallogenic event in the Tohoku region.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74073157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hydrothermal activity in the Obiro deposit embedded in the Tagawa acidic rocks, Uetsu region, NE Japan 日本东北部上津地区田川酸性岩中Obiro矿床的热液活动
IF 1.4 4区 地球科学
Resource Geology Pub Date : 2020-08-18 DOI: 10.1111/rge.12244
Yuki Nakajima, Y. Izumino, Shin‐ichi Kagashima, K. Nakashima
{"title":"Hydrothermal activity in the Obiro deposit embedded in the Tagawa acidic rocks, Uetsu region, NE Japan","authors":"Yuki Nakajima, Y. Izumino, Shin‐ichi Kagashima, K. Nakashima","doi":"10.1111/rge.12244","DOIUrl":"https://doi.org/10.1111/rge.12244","url":null,"abstract":"The Obiro deposit is located in the Tagawa Acidic Rocks (AR), Uetsu region, NE Japan. The Tagawa AR is composed of a volcanic phase of dacitic welded tuff and a plutonic phase of porphyritic granodiorite. Drill core and ore samples were collected from the deposit and examined by XRD, EPMA, and microthermometry. The drill core samples have suffered pervasively from sericite (illite) alteration, whereas pinkish K‐feldspar alteration halo occur close to veins. The results of EPMA and microthermometry is interpreted as that the magnatic‐hydrothermal fluids has changed as follows; the granodioritic magma intruded at about 1.0 kb and 700°C near the water‐saturated granite solidus; after cooling to about 500°C the fluids boiled according to a change in the pressure regime from lithostatic to hydrostatic; mixing with meteoric water led to sulfide mineralization at around 400°C or less. The main reasons for the mineralization in the Obiro deposit are as follows; the oxidized magma intruded at a shallower level, and thereafter hydrothermal fluids were boiled, resulting in a saline fluid. The saline fluid then dissolved metals such as Pb, Zn, Cu, and Bi, and these metals precipitated during cooling accompanied by dilution of the meteoric water and increasing pH, resulting in decreasing solubility.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79968713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geology and inclusion studies on the genesis of the Baolun gold deposit in Hainan Province, South China 海南宝伦金矿床成因地质与包裹体研究
IF 1.4 4区 地球科学
Resource Geology Pub Date : 2020-07-16 DOI: 10.1111/rge.12243
Liangliang Yu, Deru Xu, Weixin Chen, Boyou Zhang, L. Tian, Q. Shan
{"title":"Geology and inclusion studies on the genesis of the Baolun gold deposit in Hainan Province, South China","authors":"Liangliang Yu, Deru Xu, Weixin Chen, Boyou Zhang, L. Tian, Q. Shan","doi":"10.1111/rge.12243","DOIUrl":"https://doi.org/10.1111/rge.12243","url":null,"abstract":"The late Triassic Baolun gold deposit hosted by Silurian phyllites is a large‐scale high‐grade gold deposit in Hainan Island, South China. The ores can be classified into quartz‐vein dominated type and less altered rock type. Three mineralization stages were recognized by mineral assemblages. The early stage, as the most important mineralization stage, is characterized by a quartz–native gold assemblage. The muscovite−quartz−pyrite−native gold assemblage is related to the intermedium mineralization stage. In late mineralization stage, native gold and Bi‐bearing minerals are paragenetic minerals. Microthermometry analyses show that the early mineralization stage is characterized by two types of fluid inclusions, including CO2‐rich inclusions (C‐type) and aqueous inclusions (W‐type). C‐type inclusions homogenize at 276–335°C with an averaged value of 306°C and have salinities of 1.0–10.0 wt% NaCl equivalent (mean value of 4.9 wt% NaCl equivalent). W‐type inclusions homogenize at 252–301°C (mean value of 278°C) with salinity of 4.0–9.7 wt% NaCl equivalent (mean value of 7.4 wt% NaCl equivalent). In intermedium mineralization stage, C‐type and W‐type inclusions homogenize at 228–320°C (mean value of 283°C) and 178–296°C (mean value of 241°C), with salinities of 2.4–9.9 wt% NaCl equivalent (mean value of 6.5 wt% NaCl equivalent) and 3.7–11.7 wt% NaCl equivalent (mean value of 7.7 wt% NaCl equivalent), respectively. No suitable mineral, such as quartz or calcite, was found for fluid inclusion study from late mineralization stage. In contrast, only aqueous inclusions were found from post‐ore barren veins, which yielded lower homogenization temperatures ranging from 168–241°C (mean value of 195°C) and similar salinities (2.6–12.6 wt% NaCl equivalent with averaged value of 7.2 wt% NaCl equivalent). The different homogenization temperatures and similar salinities of C‐type and W‐type from each mineralization stage indicate that fluid immiscibility and boiling occurred. The Baolun gold deposit was precipitated from a CO2‐bearing mesothermal fluid, and formed at a syn‐collision environment following the closure of the Paleo‐Tethys.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79967888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Setting, sulfur isotope variations, and metamorphism of Jurassic massive Zn‐Pb‐Ag sulfide mineralization associated with arc‐type volcanism (Skra, Vardar zone, Νorthern Greece) 与弧型火山作用相关的侏罗纪块状Zn - Pb - Ag硫化物矿化背景、硫同位素变化及变质作用(Skra, Vardar带,Νorthern希腊)
IF 1.4 4区 地球科学
Resource Geology Pub Date : 2020-06-29 DOI: 10.1111/rge.12241
N. Skarpelis
{"title":"Setting, sulfur isotope variations, and metamorphism of Jurassic massive Zn‐Pb‐Ag sulfide mineralization associated with arc‐type volcanism (Skra, Vardar zone, Νorthern Greece)","authors":"N. Skarpelis","doi":"10.1111/rge.12241","DOIUrl":"https://doi.org/10.1111/rge.12241","url":null,"abstract":"Massive Zn‐Pb‐Ag sulfide mineralization appears conformable with felsic volcanism, developed in an Upper Jurassic volcanic arc to the Southwest (SW) of the Serbo‐Macedonian continent in Northern Greece. The host volcanic sequence of the mineralization comprises mylonitized rhyolitic to rhyodacitic lavas, pyroclastics, quartz‐feldspar porphyries, and cherty tuffs. A “white mica—quartz—pyrite” mineral assemblage characterizes the volcanic rocks in the footwall and hanging‐wall of massive sulfide ore layers, formed as a result of greenschist‐grade regional metamorphism on “clay‐quartz‐pyrite” hydrothermal alteration haloes. Massive ore lenses are usually underlain by deformed Cu‐pyrite and quartz‐pyrite stockworks. Most of the sulfide ore bodies have proximal‐type features. Ductile deformation and regional metamorphism have transformed many of the stockwork structures. The mineralization is characterized by high Zn, Pb, and Ag contents, while Cu and critical metals are low. Primary depositional textures, for example, layering, clastic pyrite, colloform, and atoll textures were identified. The overall textural features of the mineralization indicate it has undergone mechanical deformation. The most prominent features of the effects of metamorphism, folding and shearing, are modification of the ore body morphology toward flattened and boudinage structures and transformation of the ore textures toward the dominance of planar fabrics. Sulfur isotope analyses of sulfides along with textural observations are consistent with a dual source of sulfide sulfur. Sulfur isotope values for sphalerite, non‐colloform pyrite, galena, and chalcopyrite fall in a limited range from −1.6 to +4.8‰ (mean δ34S + 2‰), indicating a hydrothermal source derived from the reduction of coeval seawater sulfate in the convective system. Pyrites with colloform and atoll textures are characterized by a 34S depletion, indicating a bacterial reduction of coeval seawater sulfate. The morphology of ore beds, the mineralogy, sulfide textures, and ore chemistry along with the petrology and tectonic setting of the host rocks can be attributed to typical of a bimodal‐felsic metallogenesis. Although similar in many respects to classic Kuroko‐type volcanogenic massive sulfide mineralization, it has some atypical features, like the absence of barite ore, which is possibly a result of significant temporal depletion in sulfate due to bacterial reduction, a conclusion supported by the widespread occurrence of colloidal and atoll textures of pyrite.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78804681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Greetings from the editorial office 编辑部的问候
IF 1.4 4区 地球科学
Resource Geology Pub Date : 2020-06-25 DOI: 10.1111/rge.12236
Yasushi Watanabe
{"title":"Greetings from the editorial office","authors":"Yasushi Watanabe","doi":"10.1111/rge.12236","DOIUrl":"https://doi.org/10.1111/rge.12236","url":null,"abstract":"","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86877685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineralization age and sources of ore‐forming material of the Nanmushu Zn‐Pb deposit in the Micangshan Tectonic Belt at the northern margin of the Yangtze Craton, China: Constraints from Rb‐Sr dating and Sr‐Pb isotopes 扬子克拉通北缘米沧山构造带南木树锌Pb矿床成矿年龄及成矿物质来源:Rb - Sr测年和Sr - Pb同位素约束
IF 1.4 4区 地球科学
Resource Geology Pub Date : 2020-06-25 DOI: 10.1111/rge.12235
Zhi-Min Song, Cuihua Chen, Yulong Yang, Yan Zhang, L. Yin, Hongzhi Li
{"title":"Mineralization age and sources of ore‐forming material of the Nanmushu Zn‐Pb deposit in the Micangshan Tectonic Belt at the northern margin of the Yangtze Craton, China: Constraints from Rb‐Sr dating and Sr‐Pb isotopes","authors":"Zhi-Min Song, Cuihua Chen, Yulong Yang, Yan Zhang, L. Yin, Hongzhi Li","doi":"10.1111/rge.12235","DOIUrl":"https://doi.org/10.1111/rge.12235","url":null,"abstract":"The Nanmushu Zn‐Pb deposit, hosted by the Neoproterozoic Dengying Formation dolostone, is located in the eastern part of the Micangshan tectonic belt at the northern margin of the Yangtze Craton, China. This study involves a systematic field investigation, detailed mineralogical study, and Rb‐Sr and Pb isotopic analyses of the deposit. The results of Rb‐Sr isotopic dating of coexisting sphalerite and galena yield an isochron age of 486.7 ± 3.1 Ma, indicating the deposit was formed during the Late Cambrian to Early Ordovician. This mineralization age is interpreted to be related to the timing of destruction of the paleo‐oil reservoir in the Micangshan tectonic belt. All initial 87Sr/86Sr ratios of sphalerite and galena (0.70955–0.71212) fall into the range of the Mesoproterozoic Huodiya Group basement rocks (0.70877–0.71997) and Dengying Formation sandstone (0.70927–0.71282), which are significantly higher than those of Cambrian Guojiaba Formation limestone (0.70750–0.70980), Cambrian Guojiaba Formation carbonaceous slate (0.70766–0.71012), and Neoproterozoic Dengying Formation dolostone (0.70835–0.70876). Such Sr isotope signatures suggest that the ore strontium was mainly derived from a mixed source, and both of the Huodiya Group basement rocks and Dengying Formation sandstone were involved in ore formation. Both sphalerite and galena are characterized by an upper‐crustal source of lead (206Pb/204Pb = 17.849–18.022, 207Pb/204Pb = 15.604–15.809, and 208Pb/204Pb = 37.735–38.402), and their Pb isotopes are higher than, but partly overlap with, those of the Huodiya Group basement rocks, but differ from those of the Guojiaba and Dengying Formations. This suggests that the lead also originated from a mixed source, and the Huodiya Group basement rocks played a significant role. The Sr and Pb isotopic results suggest that the Huodiya Group basement rocks were one of the most important sources of metallogenic material. The geological and geochemical characteristics show that the Nanmushu Zn‐Pb deposit is similar to typical Mississippi Valley type, and the fluid mixing may be a reasonable metallogenic mechanism for Nanmushu Zn‐Pb deposit.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75060891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mineralization events in the Xiaokele porphyry Cu (–Mo) deposit, NE China: Evidence from zircon U–Pb and K‐feldspar Ar–Ar geochronology and petrochemistry 中国东北小柯勒斑岩型铜(钼)矿床成矿事件:锆石U-Pb和钾长石Ar-Ar年代学和岩石化学证据
IF 1.4 4区 地球科学
Resource Geology Pub Date : 2020-03-30 DOI: 10.1111/rge.12233
Yonggang Sun, Bile Li, F. Sun, Q. Ding, Baiyi Wang, Yu-jin Li, Kun Wang
{"title":"Mineralization events in the Xiaokele porphyry Cu (–Mo) deposit, NE China: Evidence from zircon U–Pb and K‐feldspar Ar–Ar geochronology and petrochemistry","authors":"Yonggang Sun, Bile Li, F. Sun, Q. Ding, Baiyi Wang, Yu-jin Li, Kun Wang","doi":"10.1111/rge.12233","DOIUrl":"https://doi.org/10.1111/rge.12233","url":null,"abstract":"The Great Xing'an Range (GXR), Northeast (NE) China, is a major polymetallic metallogenic belt in the eastern segment of the Central Asian Orogenic Belt. The newly discovered Xiaokele porphyry Cu (–Mo) deposit lies in the northern GXR. Field geological and geochronological studies have revealed two mineralization events in this deposit: early porphyry‐type Cu (–Mo) mineralization, and later vein‐type Cu mineralization. Previous geochronological studies yielded an age of ca. 147 Ma for the early Cu (–Mo) mineralization. Our 40Ar/39Ar dating yielded 40Ar/39Ar plateau ages of 124.8 ± 0.4 to 124.3 ± 0.4 Ma on K‐feldspar in altered Cu‐mineralized diorite porphyrite dikes that represent the overprinting vein‐type Cu mineralization, consistent with zircon U–Pb ages of the diorite porphyrite (126.4 ± 0.5 to 125.0 ± 0.5 Ma). The Cr and Ni contents and Mg# of the Xiaokele diorite porphyrites are high. The diorite porphyrites at Xiaokele are enriched in light rare‐earth elements (REEs), and large‐ion lithophile elements (e.g., Rb, Ba, and K), are depleted in heavy REEs and high‐field‐strength elements (e.g., Nb, Ta, and Ti), and have weak negative εHf(t) values (+0.29 to +5.27) with two‐stage model ages (TDM2) of 1,164–845 Ma. Given the regional tectonic setting in Early Cretaceous, the ore‐bearing diorite porphyrites were likely formed in an extensional environment related to lithospheric delamination and asthenospheric upwelling induced by subduction of the Paleo‐Pacific Plate. These tectonic events caused large‐scale magmatic activity, ore mineralization, and lithospheric thinning in NE China.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84769463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信