闽西南洛阳铁矿成矿的年代学及S-Pb-O-H同位素约束

IF 1.1 4区 地球科学 Q3 GEOLOGY
Resource Geology Pub Date : 2020-10-06 DOI:10.1111/rge.12247
Sen Wang, Da Zhang, Tengda Yu, Ganguo Wu, Y. Di, Yaoyao Zhang, Jimin Yao
{"title":"闽西南洛阳铁矿成矿的年代学及S-Pb-O-H同位素约束","authors":"Sen Wang, Da Zhang, Tengda Yu, Ganguo Wu, Y. Di, Yaoyao Zhang, Jimin Yao","doi":"10.1111/rge.12247","DOIUrl":null,"url":null,"abstract":"The Luoyang Fe polymetallic deposit is a well‐known Makeng‐type ore deposit in a late Paleozoic basin in southwest Fujian, southeast China. To investigate the generation of Makeng‐type Fe deposits, we conducted an integrated study of geochronology and S–Pb–O–H isotope compositions of the Luoyang Fe deposit. The LA–ICP–MS zircon U–Pb ages of the granite and Re–Os ages of the molybdenite suggest that the emplacement of the granite was coeval with the mineralization of the Luoyang deposit at 133–131 Ma. The H–O and S–Pb isotope compositions indicate that the metallogenic material of the Luoyang deposit had a magmatic hydrothermal source, and was derived mainly from the upper crust with a low degree of contamination of mantle material. The Pb isotope analyses of the ore minerals show that the Luoyang Fe deposit formed in an orogenic setting.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":"9 1","pages":"63 - 79"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Geochronology and S–Pb–O–H isotopic constraints on the generation of the Luoyang Fe deposit in southwest Fujian Province, SE China\",\"authors\":\"Sen Wang, Da Zhang, Tengda Yu, Ganguo Wu, Y. Di, Yaoyao Zhang, Jimin Yao\",\"doi\":\"10.1111/rge.12247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Luoyang Fe polymetallic deposit is a well‐known Makeng‐type ore deposit in a late Paleozoic basin in southwest Fujian, southeast China. To investigate the generation of Makeng‐type Fe deposits, we conducted an integrated study of geochronology and S–Pb–O–H isotope compositions of the Luoyang Fe deposit. The LA–ICP–MS zircon U–Pb ages of the granite and Re–Os ages of the molybdenite suggest that the emplacement of the granite was coeval with the mineralization of the Luoyang deposit at 133–131 Ma. The H–O and S–Pb isotope compositions indicate that the metallogenic material of the Luoyang deposit had a magmatic hydrothermal source, and was derived mainly from the upper crust with a low degree of contamination of mantle material. The Pb isotope analyses of the ore minerals show that the Luoyang Fe deposit formed in an orogenic setting.\",\"PeriodicalId\":21089,\"journal\":{\"name\":\"Resource Geology\",\"volume\":\"9 1\",\"pages\":\"63 - 79\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resource Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/rge.12247\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resource Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/rge.12247","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

洛阳铁多金属矿床是闽西南晚古生代盆地中一个著名的马坑型矿床。为探讨洛阳马坑型铁矿的成因,对洛阳马坑型铁矿进行了年代学和S-Pb-O-H同位素组成的综合研究。花岗岩的LA-ICP-MS锆石U-Pb年龄和辉钼矿的Re-Os年龄表明,花岗岩的侵位与洛阳矿床的成矿作用在133 ~ 131 Ma之间。H-O和S-Pb同位素组成表明,洛阳矿床成矿物质为岩浆热液源,成矿物质主要来源于上地壳,地幔物质污染程度较低。矿石矿物Pb同位素分析表明,洛阳铁矿形成于造山带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geochronology and S–Pb–O–H isotopic constraints on the generation of the Luoyang Fe deposit in southwest Fujian Province, SE China
The Luoyang Fe polymetallic deposit is a well‐known Makeng‐type ore deposit in a late Paleozoic basin in southwest Fujian, southeast China. To investigate the generation of Makeng‐type Fe deposits, we conducted an integrated study of geochronology and S–Pb–O–H isotope compositions of the Luoyang Fe deposit. The LA–ICP–MS zircon U–Pb ages of the granite and Re–Os ages of the molybdenite suggest that the emplacement of the granite was coeval with the mineralization of the Luoyang deposit at 133–131 Ma. The H–O and S–Pb isotope compositions indicate that the metallogenic material of the Luoyang deposit had a magmatic hydrothermal source, and was derived mainly from the upper crust with a low degree of contamination of mantle material. The Pb isotope analyses of the ore minerals show that the Luoyang Fe deposit formed in an orogenic setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resource Geology
Resource Geology 地学-地质学
CiteScore
2.30
自引率
14.30%
发文量
18
审稿时长
12 months
期刊介绍: Resource Geology is an international journal focusing on economic geology, geochemistry and environmental geology. Its purpose is to contribute to the promotion of earth sciences related to metallic and non-metallic mineral deposits mainly in Asia, Oceania and the Circum-Pacific region, although other parts of the world are also considered. Launched in 1998 by the Society for Resource Geology, the journal is published quarterly in English, making it more accessible to the international geological community. The journal publishes high quality papers of interest to those engaged in research and exploration of mineral deposits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信