与弧型火山作用相关的侏罗纪块状Zn - Pb - Ag硫化物矿化背景、硫同位素变化及变质作用(Skra, Vardar带,Νorthern希腊)

IF 1.1 4区 地球科学 Q3 GEOLOGY
Resource Geology Pub Date : 2020-06-29 DOI:10.1111/rge.12241
N. Skarpelis
{"title":"与弧型火山作用相关的侏罗纪块状Zn - Pb - Ag硫化物矿化背景、硫同位素变化及变质作用(Skra, Vardar带,Νorthern希腊)","authors":"N. Skarpelis","doi":"10.1111/rge.12241","DOIUrl":null,"url":null,"abstract":"Massive Zn‐Pb‐Ag sulfide mineralization appears conformable with felsic volcanism, developed in an Upper Jurassic volcanic arc to the Southwest (SW) of the Serbo‐Macedonian continent in Northern Greece. The host volcanic sequence of the mineralization comprises mylonitized rhyolitic to rhyodacitic lavas, pyroclastics, quartz‐feldspar porphyries, and cherty tuffs. A “white mica—quartz—pyrite” mineral assemblage characterizes the volcanic rocks in the footwall and hanging‐wall of massive sulfide ore layers, formed as a result of greenschist‐grade regional metamorphism on “clay‐quartz‐pyrite” hydrothermal alteration haloes. Massive ore lenses are usually underlain by deformed Cu‐pyrite and quartz‐pyrite stockworks. Most of the sulfide ore bodies have proximal‐type features. Ductile deformation and regional metamorphism have transformed many of the stockwork structures. The mineralization is characterized by high Zn, Pb, and Ag contents, while Cu and critical metals are low. Primary depositional textures, for example, layering, clastic pyrite, colloform, and atoll textures were identified. The overall textural features of the mineralization indicate it has undergone mechanical deformation. The most prominent features of the effects of metamorphism, folding and shearing, are modification of the ore body morphology toward flattened and boudinage structures and transformation of the ore textures toward the dominance of planar fabrics. Sulfur isotope analyses of sulfides along with textural observations are consistent with a dual source of sulfide sulfur. Sulfur isotope values for sphalerite, non‐colloform pyrite, galena, and chalcopyrite fall in a limited range from −1.6 to +4.8‰ (mean δ34S + 2‰), indicating a hydrothermal source derived from the reduction of coeval seawater sulfate in the convective system. Pyrites with colloform and atoll textures are characterized by a 34S depletion, indicating a bacterial reduction of coeval seawater sulfate. The morphology of ore beds, the mineralogy, sulfide textures, and ore chemistry along with the petrology and tectonic setting of the host rocks can be attributed to typical of a bimodal‐felsic metallogenesis. Although similar in many respects to classic Kuroko‐type volcanogenic massive sulfide mineralization, it has some atypical features, like the absence of barite ore, which is possibly a result of significant temporal depletion in sulfate due to bacterial reduction, a conclusion supported by the widespread occurrence of colloidal and atoll textures of pyrite.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":"48 1","pages":"311 - 335"},"PeriodicalIF":1.1000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Setting, sulfur isotope variations, and metamorphism of Jurassic massive Zn‐Pb‐Ag sulfide mineralization associated with arc‐type volcanism (Skra, Vardar zone, Νorthern Greece)\",\"authors\":\"N. Skarpelis\",\"doi\":\"10.1111/rge.12241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive Zn‐Pb‐Ag sulfide mineralization appears conformable with felsic volcanism, developed in an Upper Jurassic volcanic arc to the Southwest (SW) of the Serbo‐Macedonian continent in Northern Greece. The host volcanic sequence of the mineralization comprises mylonitized rhyolitic to rhyodacitic lavas, pyroclastics, quartz‐feldspar porphyries, and cherty tuffs. A “white mica—quartz—pyrite” mineral assemblage characterizes the volcanic rocks in the footwall and hanging‐wall of massive sulfide ore layers, formed as a result of greenschist‐grade regional metamorphism on “clay‐quartz‐pyrite” hydrothermal alteration haloes. Massive ore lenses are usually underlain by deformed Cu‐pyrite and quartz‐pyrite stockworks. Most of the sulfide ore bodies have proximal‐type features. Ductile deformation and regional metamorphism have transformed many of the stockwork structures. The mineralization is characterized by high Zn, Pb, and Ag contents, while Cu and critical metals are low. Primary depositional textures, for example, layering, clastic pyrite, colloform, and atoll textures were identified. The overall textural features of the mineralization indicate it has undergone mechanical deformation. The most prominent features of the effects of metamorphism, folding and shearing, are modification of the ore body morphology toward flattened and boudinage structures and transformation of the ore textures toward the dominance of planar fabrics. Sulfur isotope analyses of sulfides along with textural observations are consistent with a dual source of sulfide sulfur. Sulfur isotope values for sphalerite, non‐colloform pyrite, galena, and chalcopyrite fall in a limited range from −1.6 to +4.8‰ (mean δ34S + 2‰), indicating a hydrothermal source derived from the reduction of coeval seawater sulfate in the convective system. Pyrites with colloform and atoll textures are characterized by a 34S depletion, indicating a bacterial reduction of coeval seawater sulfate. The morphology of ore beds, the mineralogy, sulfide textures, and ore chemistry along with the petrology and tectonic setting of the host rocks can be attributed to typical of a bimodal‐felsic metallogenesis. Although similar in many respects to classic Kuroko‐type volcanogenic massive sulfide mineralization, it has some atypical features, like the absence of barite ore, which is possibly a result of significant temporal depletion in sulfate due to bacterial reduction, a conclusion supported by the widespread occurrence of colloidal and atoll textures of pyrite.\",\"PeriodicalId\":21089,\"journal\":{\"name\":\"Resource Geology\",\"volume\":\"48 1\",\"pages\":\"311 - 335\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resource Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/rge.12241\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resource Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/rge.12241","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

大量的锌-铅-银硫化物矿化与长英质火山作用一致,形成于希腊北部塞尔维亚-马其顿大陆西南(SW)的上侏罗世火山弧中。成矿的主火山序列包括糜棱岩化流纹岩至流纹酸熔岩、火山碎屑、石英长石斑岩和硅质凝灰岩。“白色云母-石英-黄铁矿”矿物组合是块状硫化物矿层下盘和上盘火山岩的特征,是绿片岩级区域变质作用在“粘土-石英-黄铁矿”热液蚀变晕上形成的。块状矿石透镜体通常被变形的铜-黄铁矿和石英-黄铁矿网所覆盖。多数硫化物矿体具有近端型特征。韧性变形和区域变质作用改变了许多网状构造。矿化特征为锌、铅、银含量高,铜和关键金属含量低。确定了层状、碎屑黄铁矿、胶状和环礁等原始沉积结构。矿化的整体构造特征表明其经历了机械变形。变质作用、褶皱作用和剪切作用的最突出特征是使矿体形态向扁平、破碎构造转变,使矿体结构向平面组构为主转变。硫化物的硫同位素分析以及结构观测与硫化物硫的双重来源一致。闪锌矿、非胶状黄铁矿、方铅矿和黄铜矿的硫同位素值在- 1.6 ~ +4.8‰(平均δ34S + 2‰)范围内有限下降,表明其为对流系统中同期海水硫酸盐还原形成的热液源。具有胶状和环礁结构的黄铁矿具有34S耗损特征,表明同时期海水硫酸盐的细菌还原。矿床的形态、矿物学、硫化物结构和矿石化学以及寄主岩石的岩石学和构造环境可归因于典型的双峰-长英质成矿作用。虽然在许多方面与经典的Kuroko型火山成因块状硫化物矿化相似,但它也有一些非典型特征,比如缺乏重晶石矿石,这可能是由于细菌还原导致硫酸盐的显著时间损耗的结果,这一结论得到了广泛存在的黄铁矿胶体和环礁结构的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Setting, sulfur isotope variations, and metamorphism of Jurassic massive Zn‐Pb‐Ag sulfide mineralization associated with arc‐type volcanism (Skra, Vardar zone, Νorthern Greece)
Massive Zn‐Pb‐Ag sulfide mineralization appears conformable with felsic volcanism, developed in an Upper Jurassic volcanic arc to the Southwest (SW) of the Serbo‐Macedonian continent in Northern Greece. The host volcanic sequence of the mineralization comprises mylonitized rhyolitic to rhyodacitic lavas, pyroclastics, quartz‐feldspar porphyries, and cherty tuffs. A “white mica—quartz—pyrite” mineral assemblage characterizes the volcanic rocks in the footwall and hanging‐wall of massive sulfide ore layers, formed as a result of greenschist‐grade regional metamorphism on “clay‐quartz‐pyrite” hydrothermal alteration haloes. Massive ore lenses are usually underlain by deformed Cu‐pyrite and quartz‐pyrite stockworks. Most of the sulfide ore bodies have proximal‐type features. Ductile deformation and regional metamorphism have transformed many of the stockwork structures. The mineralization is characterized by high Zn, Pb, and Ag contents, while Cu and critical metals are low. Primary depositional textures, for example, layering, clastic pyrite, colloform, and atoll textures were identified. The overall textural features of the mineralization indicate it has undergone mechanical deformation. The most prominent features of the effects of metamorphism, folding and shearing, are modification of the ore body morphology toward flattened and boudinage structures and transformation of the ore textures toward the dominance of planar fabrics. Sulfur isotope analyses of sulfides along with textural observations are consistent with a dual source of sulfide sulfur. Sulfur isotope values for sphalerite, non‐colloform pyrite, galena, and chalcopyrite fall in a limited range from −1.6 to +4.8‰ (mean δ34S + 2‰), indicating a hydrothermal source derived from the reduction of coeval seawater sulfate in the convective system. Pyrites with colloform and atoll textures are characterized by a 34S depletion, indicating a bacterial reduction of coeval seawater sulfate. The morphology of ore beds, the mineralogy, sulfide textures, and ore chemistry along with the petrology and tectonic setting of the host rocks can be attributed to typical of a bimodal‐felsic metallogenesis. Although similar in many respects to classic Kuroko‐type volcanogenic massive sulfide mineralization, it has some atypical features, like the absence of barite ore, which is possibly a result of significant temporal depletion in sulfate due to bacterial reduction, a conclusion supported by the widespread occurrence of colloidal and atoll textures of pyrite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resource Geology
Resource Geology 地学-地质学
CiteScore
2.30
自引率
14.30%
发文量
18
审稿时长
12 months
期刊介绍: Resource Geology is an international journal focusing on economic geology, geochemistry and environmental geology. Its purpose is to contribute to the promotion of earth sciences related to metallic and non-metallic mineral deposits mainly in Asia, Oceania and the Circum-Pacific region, although other parts of the world are also considered. Launched in 1998 by the Society for Resource Geology, the journal is published quarterly in English, making it more accessible to the international geological community. The journal publishes high quality papers of interest to those engaged in research and exploration of mineral deposits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信