{"title":"Research of in vivo reprogramming toward clinical applications in regenerative medicine: A concise review","authors":"Yoshihiko Nakatsukasa, Yosuke Yamada, Yasuhiro Yamada","doi":"10.1016/j.reth.2024.11.008","DOIUrl":"10.1016/j.reth.2024.11.008","url":null,"abstract":"<div><div>The successful generation of induced pluripotent stem cells (iPSCs) has significantly impacted many scientific fields. In the field of regenerative medicine, iPSC-derived somatic cells are expected to recover impaired organ functions through cell transplantation therapy. Subsequent studies using genetically engineered mouse models showed that somatic cells are also reprogrammable <em>in vivo</em>. Notably, cyclic expression of reprogramming factors, so-called partial reprogramming <em>in vivo</em> ameliorates cellular and physiological hallmarks of aging without inducing teratoma formation or premature death of animals. Subsequent studies provided evidence supporting the beneficial effects of partial reprogramming in various organs. Although <em>in vivo</em> reprogramming appears to be a promising strategy for tissue regeneration and rejuvenation, there remain unsolved issues that hinder its clinical application, including concerns regarding its safety, controllability, and unexpected detrimental effects. Here, we review the pathway that research of <em>in vivo</em> reprogramming has followed and discuss the future perspective as we look toward its clinical application in regenerative medicine.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"28 ","pages":"Pages 12-19"},"PeriodicalIF":3.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marwa S. Shalaby , Eman S. Abdel-Reheim , Taghreed N. Almanaa , Lama Abdulaziz Alhaber , Ahmed Nabil , Osama M. Ahmed , Mariam Elwan , Adel Abdel-Moneim
{"title":"Therapeutic effects of mesenchymal stem cell conditioned media on streptozotocin-induced diabetes in Wistar rats","authors":"Marwa S. Shalaby , Eman S. Abdel-Reheim , Taghreed N. Almanaa , Lama Abdulaziz Alhaber , Ahmed Nabil , Osama M. Ahmed , Mariam Elwan , Adel Abdel-Moneim","doi":"10.1016/j.reth.2024.11.004","DOIUrl":"10.1016/j.reth.2024.11.004","url":null,"abstract":"<div><div>Cell-based therapy is a new direction of treatment of diseases such as type 1 diabetes mellitus (T1DM); but unfortunately, its severe side effects include immunogenicity and tumor development. Using Mesenchymal stem cells conditioned medium (MSCs-CM) may be an alternative therapy to avoid stem cell risks, preserving effectiveness and demonstrating noticeably increased levels of cytokines, angiogenic factors, and growth factors that encourage and support regenerative processes. In the current work, we examined the effects of MSCs-CM injected in tail vein and pancreas directly compared with the standard antidiabetic drug, glimepiride in streptozotocin-induced type 1 diabetic rats. Fifty adults Male Wistar rats were allocated equally into five groups: normal, diabetic control and three diabetic groups treated respectively with glimepiride, MSCs-CM injected daily into tail vein (MSCs-CMT) and MSCs-CM injected directly in pancreas (MSCs-CMP); all treatments continued for 28 days. The treatments produced a significant improvement in blood glucose level and glycosylated hemoglobin A1c (HbA1c), serum insulin level and lipid panel, and pancreas apoptosis-related markers including B cell lymphoma-2 (Bcl-2) and vimentin. In addition, the treatments resulted in suppression in the oxidation stress and enhancement in the antioxidant, which were manifested by the suppressed lipid peroxidation and the increased antioxidant markers (glutathione, catalase and superoxide dismutase) in the pancreas. In association with the significant decrease in tumour necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) and a significant increase in interleukin-10 (IL-10) levels, the inflammatory mediator nuclear factor-kappa B (NF-κB) expression was significantly decreased by MSCs-CMT and MSCs-CMP. The histological amelioration of the pancreatic islet cells assured our study especially in MSCs-CMP group than MSCs-CMT which supports islet regeneration and elevated circulating insulin. These results imply that MSCs-CM infusion has therapeutic benefits in T1DM rats and may be a viable novel therapeutic approach; MSCs-CMP was shown to be more effective than glimepiride and MSCs-CMT. The mechanisms of antidiabtic actions may be mediated <em>via</em> the antioxidant, anti-apoptotic and anti-inflammatory effects.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"28 ","pages":"Pages 1-11"},"PeriodicalIF":3.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regenerative TherapyPub Date : 2024-11-21eCollection Date: 2024-06-01DOI: 10.1016/j.reth.2024.11.003
Renjie Zuo, Quan Liao, Ziwei Ye, Chenchun Ding, Zhenzhen Guo, Junjie He, Guoyan Liu
{"title":"Antler blood enhances the ability of stem cell-derived exosomes to promote bone and vascular regeneration.","authors":"Renjie Zuo, Quan Liao, Ziwei Ye, Chenchun Ding, Zhenzhen Guo, Junjie He, Guoyan Liu","doi":"10.1016/j.reth.2024.11.003","DOIUrl":"10.1016/j.reth.2024.11.003","url":null,"abstract":"<p><strong>Background: </strong>Bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exos) are important in promoting bone and vascular regeneration. Antler blood (ALB) is a valuable traditional Chinese medicine with potent regenerative effects. However, there is still a lack of clarity regarding the relationship between ALB and BMSC-Exos.</p><p><strong>Methods: </strong>Primary BMSCs were isolated from SD Rats, and BMSC-derived Exos (BMSC-Exos) were harvested and identified accordingly. ALB was treated with the solution contained pepsin and hydrochloric acid to simulated gastrointestinal digestion <i>in vitro</i>. Furthermore, the liquid chromatography-mass spectrometry (LC-MS) was performed to determine the components of digested ALB. Moreover, ALB was utilized to intervene on BMSCs to produce specialized Exos (Exos-ALB), of which the angiogenesis functions were detected both <i>in vitro</i> and <i>in vivo</i>. For the potential mechanism, both high-throughput sequencing and proteomics were performed.</p><p><strong>Results: </strong>The main components of ALB consist of amino acids and peptides. Both ALB and BMSC-Exos exhibited significant promotion of bone and blood vessel formation, respectively. Moreover, ALB and BMSC-Exos could increase the expression of BMP-2, RUNX2, and ALP, but reduce the Osteopontin (OPN) expression. Notably, Exos-ALB exhibited the strongest performance in these functions, whereas the presence of miR-21-5p inhibitor can partially counteract the effects of Exos-ALB. The proteomics reveal differential genes associated with bone minimization, angiogenesis, osteoblast differentiation, vesicle-mediated transport, and the Wnt signaling pathway.</p><p><strong>Conclusion: </strong>ALB enhances the ability of BMSCs-derived Exos to promote bone and vascular regeneration, which may be related to the up-regulation of miR-21-5p.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1168-1180"},"PeriodicalIF":3.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regenerative TherapyPub Date : 2024-11-20eCollection Date: 2024-06-01DOI: 10.1016/j.reth.2024.11.005
Yunyi Gao, Lihong Chen, Yan Li, Shiyi Sun, XingWu Ran
{"title":"HUC-MSCs combined with platelet lysate treat diabetic chronic cutaneous ulcers in Bama miniature pig.","authors":"Yunyi Gao, Lihong Chen, Yan Li, Shiyi Sun, XingWu Ran","doi":"10.1016/j.reth.2024.11.005","DOIUrl":"10.1016/j.reth.2024.11.005","url":null,"abstract":"<p><p>Human umbilical cord mesenchymal stem cells (HUC-MSCs) and platelet lysate (PL) shows potential of wound healing. However, MSCs in combination with PL for wound healing is still lacking. In this study, we presented high glucose cultured wound related cells to mimic diabetic chronic ulcers (DCU) cells, wound healing indicators and the TGFβ/Smad signaling pathway were detected by PL cultured HUC-MSC supernatant (MSC-Sp) in vitro. In vivo study, diabetes was induced in pigs feeding a high-energy diet and multiple injections of streptozotocin (125 mg/kg). Chronic wounds were created on both sides of the backs of seven pigs by surgical creation and foreign body compression for eight weeks before treatment. The wounds were treated with saline control (N = 11), PL (N = 11), HUC- MSCs (N = 18, 6 × 10<sup>6</sup>/mL/cm<sup>2</sup>), and PL + HUC-MSCs (N = 18, 6 × 10<sup>6</sup>/mL/cm<sup>2</sup>) respectively. Tissue samples were collected to observe new collagen, neovascularization, wound healing factors, and the TGFβ/Smad signaling pathway. The resulting PL-cultured MSC-Sp promoted the proliferation of keratinocytes, fibroblasts, and vascular endothelial cells and inhibited the TGFβ1/TGFβ3 ratio, upregulated VEGF-α and PDGF-BB production by keratinocytes and fibroblasts, and downregulated the expression of CD86, IL-6, and TNF-α in RAW264.7 cells. PL + HUC-MSCs had the best wound healing rate in vivo, and promoted collagen formation, neovascularization, and inflammation, regulated the balance between IL-6/TGFβ1 and IL-6/Arg-1 and upregulated the expression of VEGF-α and TGFβ1. In summary, PL + HUC-MSCs had a better wound healing effect than HUC-MSCs or PL treatment alone by regulating the IL-6/Arg-1 and IL-6/TGFβ1 balance and upregulating TGFβ1, VEGF-α, Col1, and α-SMA.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1138-1149"},"PeriodicalIF":3.4,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617409/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regenerative TherapyPub Date : 2024-11-20eCollection Date: 2024-06-01DOI: 10.1016/j.reth.2024.11.006
Datesh Daneshwar, Yemin Lee, Abid Nordin
{"title":"Stem cell assisted low-intensity shockwave for erectile dysfunction treatment: Current perspective.","authors":"Datesh Daneshwar, Yemin Lee, Abid Nordin","doi":"10.1016/j.reth.2024.11.006","DOIUrl":"10.1016/j.reth.2024.11.006","url":null,"abstract":"<p><p>Stem cell therapy and low-intensity extracorporeal shockwave (LI-ECSW) are recognized as potential restorative therapies and have been used in the treatment of erectile dysfunction (ED). Stem cell therapy is well-known due to its attributed regenerative ability and thus can help to improve erectile function in patients with vasculogenic ED. Besides, current evidence also shows that LI-ECSW therapy can help stimulate cell recruitment and proliferation and promote angiogenesis and vascularization in the damaged tissue. Hence, due to the therapeutic and restorative effects of both therapies, the success of ED treatment can be elevated through a combination therapy between stem cell therapy and LI-ECSW. In this review, a detailed description and efficacy discussion of combination therapies between different types of stem cells and LI-ECSW therapy are described. Besides, other potential cell types to use together with LI-ECSW are also listed in this review. Thus, this review provides better insight on the efficacy of combination therapy for ED treatment.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1150-1158"},"PeriodicalIF":3.4,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insight of the interrelationship and association mechanism between periodontitis and diabetes mellitus.","authors":"Yongqiang Yang, Xia Sun, Yucheng Yang, Yingchun Qie","doi":"10.1016/j.reth.2024.11.001","DOIUrl":"10.1016/j.reth.2024.11.001","url":null,"abstract":"<p><p>Periodontitis and diabetes mellitus are two prevalent chronic diseases that have been recognized to exhibit a bidirectional relationship. Individuals with diabetes are more susceptible to periodontitis, and conversely, periodontitis can exacerbate glycemic control in diabetic patients. The underlying mechanisms of this interrelationship involve complex pathways, including inflammatory responses, altered immune functions, and microbial dysbiosis. The mechanistic insights into the interrelationship between periodontitis and diabetes mellitus revolve around the role of inflammation as a common link between the two diseases. Inflammatory mediators such as cytokines, chemokines, and prostaglandins play a crucial role in the pathogenesis and progression of the diseases. The dysregulation of the immune response in diabetes can exacerbate the inflammatory response in periodontitis, leading to increased tissue destruction and bone resorption. The chronic inflammation in periodontitis can contribute to insulin resistance and impaired glycemic control in diabetic patients. Future directions in research aim to further elucidate the molecular mechanisms underlying the interrelationship between periodontitis and diabetes mellitus. Modulating the inflammatory response, restoring microbial balance, and improving glycemic control hold promise in managing both conditions simultaneously. Herein, we will provide an overview of the interrelationship of periodontitis and diabetes mellitus, and retrospect the underlying mechanisms, which may inspire investigators with further research directions.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1159-1167"},"PeriodicalIF":3.4,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exosomes derived stem cells as a modern therapeutic approach for skin rejuvenation and hair regrowth.","authors":"Fatemeh Norouzi, Sanaz Aghajani, Nasim Vosoughi, Shiva Sharif, Kazem Ghahremanzadeh, Zeinab Mokhtari, Javad Verdi","doi":"10.1016/j.reth.2024.10.001","DOIUrl":"10.1016/j.reth.2024.10.001","url":null,"abstract":"<p><strong>Background: </strong>The skin covers the surface of the body and acts as the first defense barrier against environmental damage. Exposure of the skin to environmental physical and chemical factors such as mechanical injuries, UV rays, air pollution, chemicals, etc. Leads to numerous damages to skin cells such as fibroblasts, keratinocytes, melanocytes, etc. The harmful effects of environmental factors on skin cells could lead to various skin diseases, chronic wounds, wrinkles, and skin aging. Hair is an essential part of the body, serving multiple functions such as regulating body temperature and protecting against external factors like dust (through eyelashes and eyebrows). It also reflects an individual's personality. Therefore, the need for new treatment methods for skin diseases and lesions and at the same time preserving the youth, freshness, and beauty of the skin has been highly noticed by experts. Exosomes are nanovesicles derived from cells that contain various biological compounds such as lipids, proteins, nucleic acids, and carbohydrates. They are secreted by a variety of mammalian cells and even different plants. Exosomes are of great interest as a new therapeutic approach due to their stability, ability to be transported throughout the body, paracrine and endocrine effects, as well as the ability to carry various compounds and drugs to target cells.</p><p><strong>Aim: </strong>In this review, we have discussed the characteristics of exosomes, their cellular sources, and their therapeutic effects on wrinkles, skin aging, and rejuvenation and hair regrowth.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1124-1137"},"PeriodicalIF":3.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regenerative TherapyPub Date : 2024-11-16eCollection Date: 2024-06-01DOI: 10.1016/j.reth.2024.11.002
Mitsuru Mizuno, Koki Abe, Takashi Kakimoto, Hisashi Hasebe, Ichiro Sekiya
{"title":"Decreasing electricity costs of clean room for cell products during non-operation.","authors":"Mitsuru Mizuno, Koki Abe, Takashi Kakimoto, Hisashi Hasebe, Ichiro Sekiya","doi":"10.1016/j.reth.2024.11.002","DOIUrl":"10.1016/j.reth.2024.11.002","url":null,"abstract":"<p><strong>Introduction: </strong>Cell processing facilities are susceptible to environmental bacteria and must maintain sterile environments to safeguard cell products. This process involves circulating air through high-efficiency particulate air (HEPA) filters, which incurs significant maintenance costs. While cost-reduction strategies have been explored in the semiconductor industry, validations specific to cell processing facilities remain unreported. This study aims to verify whether optimizing air-conditioning management in cell processing facilities can achieve energy savings by using particle counters to measure air quality during both non-operational and hypothetical operational conditions.</p><p><strong>Methods: </strong>The study assessed particle generation under varying air conditions to evaluate potential savings and the impact of reducing air-change rates. The air conditions were defined as follows: Condition 1 (C1) represented normal air conditions (100 %), followed by C2 (72.87 %), C3 (45.74 %), C4 (18.60 %), and C5 (0 %). The number of particles was evaluated across these conditions. Particle counters measured the quantity of particles during non-operational periods and during a 2-min walking motion. The time taken for particle levels to stabilize and become undetectable was also analyzed. Theoretical electricity cost savings were estimated for hypothetical operating and non-operating hours, with calculations adjusted for facilities ranging in size from small (100 m<sup>2</sup>) to large (1000 m<sup>2</sup>).</p><p><strong>Results: </strong>Results indicated that under air conditions C1, C2, C3, and C4, almost no particles were detected, whereas in C5, where air conditioning was halted, particle counts still remained below guideline values. Total particle counts at the four positions were significantly higher at both 0.5 and 5 μm under conditions C4 and C5 compared to other settings. The study also demonstrated that the rate of particle increase during operation varied by air-conditioning condition and position. Notably, reducing the air-change rate significantly enhanced energy savings, especially in larger facilities. For instance, annual electricity consumption in a large facility could potentially be reduced from approximately 31 million yen to approximately 9.6 million yen, yielding savings of approximately 20 million yen.</p><p><strong>Conclusions: </strong>Even with a reduced air-change rate during non-operation, it was possible to maintain the cleanliness standards for each grade. The findings suggest that current operational practices are often excessive and that significant reductions in operating costs can be achieved by adjusting ventilation frequencies during non-operational periods. This study provides crucial insights for managing cell processing facilities facing challenges such as low production rates, the necessity of operating at full capacity due to on-demand autotransplantation, and high maintenance costs.</","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1117-1123"},"PeriodicalIF":3.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614862/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regenerative TherapyPub Date : 2024-11-08eCollection Date: 2024-06-01DOI: 10.1016/j.reth.2024.10.011
Guanwen Gao, Li Li, Changling Li, Degao Liu, Yunfei Wang, Changzhong Li
{"title":"Mesenchymal stem cells: Guardians of women's health.","authors":"Guanwen Gao, Li Li, Changling Li, Degao Liu, Yunfei Wang, Changzhong Li","doi":"10.1016/j.reth.2024.10.011","DOIUrl":"10.1016/j.reth.2024.10.011","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) have attracted more and more attention because of their multidirectional differentiation potential, immune regulatory abilities and self-renewal capacity. In recent years, their use has become prominent in the domains of regenerative medicine and tissue engineering. MSCs have shown promise in therapeutic studies for a variety of diseases and have become a new source of innovative solutions for the treatment of some obstetric and gynecological diseases. This review systematically presents the latest research on the use of MSCs in the treatment of obstetrics- and gynecology-related diseases. Specifically, this review encompasses the latest findings related to the role of MSCs in premature ovarian failure, polycystic ovary syndrome, ovarian cancer, fallopian tube-related diseases, uterine adhesions, endometriosis, cesarean scar defects, postmenopausal osteoporosis, and pelvic floor dysfunction. The shortcomings and challenges of the future use of MSCs in disease treatment are also discussed, with the intent to motivate improvements in MSC applications in clinical therapy. It is believed that with further research, MSCs will play a more important role in the treatment of obstetrics- and gynecology-related diseases.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1087-1098"},"PeriodicalIF":3.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regenerative TherapyPub Date : 2024-11-08eCollection Date: 2024-06-01DOI: 10.1016/j.reth.2024.10.012
Yu Zeng, Xiaodong Cui, Hong Li, Yanhui Wang, Min Cheng, Xiaoyun Zhang
{"title":"Extracellular vesicles originating from the mechanical microenvironment in the pathogenesis and applications for cardiovascular diseases.","authors":"Yu Zeng, Xiaodong Cui, Hong Li, Yanhui Wang, Min Cheng, Xiaoyun Zhang","doi":"10.1016/j.reth.2024.10.012","DOIUrl":"10.1016/j.reth.2024.10.012","url":null,"abstract":"<p><p>The mechanical microenvironment plays a crucial regulatory role in the growth and development of cells. Mechanical stimuli, including shear, tensile, compression, and extracellular matrix forces, significantly influence cell adhesion, migration, proliferation, differentiation, and various other cellular functions. Extracellular vesicles (EVs) are involved in numerous physiological and pathological processes, with their occurrence and secretion being strictly regulated by the mechanical microenvironment. Recent studies have confirmed that alterations in the mechanical microenvironment are present in cardiovascular diseases, and the components of EVs can respond to changes in mechanical signals, thereby impacting the progression of these diseases. Additionally, engineered EVs, created by leveraging mechanical microenvironments, can serve as natural drug-delivery vehicles for treating and managing specific diseases. This article systematically reviews the regulatory mechanisms through which the mechanical microenvironment influences EVs and summarizes the role and advancements of EVs derived from this environment in the context of cardiovascular diseases.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1069-1077"},"PeriodicalIF":3.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}