Comparative gastrointestinal organoid models across species: A Zoobiquity approach for precision medicine

IF 3.4 3区 环境科学与生态学 Q3 CELL & TISSUE ENGINEERING
Masaya Tsukamoto , Hidenori Akutsu
{"title":"Comparative gastrointestinal organoid models across species: A Zoobiquity approach for precision medicine","authors":"Masaya Tsukamoto ,&nbsp;Hidenori Akutsu","doi":"10.1016/j.reth.2024.12.013","DOIUrl":null,"url":null,"abstract":"<div><div>Gastrointestinal (GI) health underpins systemic well-being, yet the complexity of gut physiology poses significant challenges to understanding disease mechanisms and developing effective, personalized therapies. Traditional models often fail to capture the intricate interplay between epithelial, mesenchymal, immune, and neuronal cells that govern gut homeostasis and disease. Over the past five years, advances in organoid technology have created physiologically relevant, three-dimensional GI models that replicate native tissue architecture and function. These models have revolutionized the study of autoimmune disorders, homeostatic dysfunction, and pathogen infections, such as norovirus and <em>Salmonella</em>, which affect millions of humans and animals globally. In this review, we explore how organoids, derived from intestinal and pluripotent stem cells, are transforming our understanding of GI development, disease etiology, and therapeutic innovation. Through the “Zoobiquity” paradigm and “One Health” framework, we highlight the integration of companion animal organoids, which provide invaluable insights into shared disease mechanisms and preclinical therapeutic development. Despite their promise, challenges remain in achieving organoid maturation, expanding immune and neuronal integration, and bridging the gap between organoid responses and <em>in vivo</em> outcomes. By refining these cutting-edge platforms, we can advance human and veterinary medicine alike, fostering a holistic approach to health and disease.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"28 ","pages":"Pages 314-320"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320424002335","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Gastrointestinal (GI) health underpins systemic well-being, yet the complexity of gut physiology poses significant challenges to understanding disease mechanisms and developing effective, personalized therapies. Traditional models often fail to capture the intricate interplay between epithelial, mesenchymal, immune, and neuronal cells that govern gut homeostasis and disease. Over the past five years, advances in organoid technology have created physiologically relevant, three-dimensional GI models that replicate native tissue architecture and function. These models have revolutionized the study of autoimmune disorders, homeostatic dysfunction, and pathogen infections, such as norovirus and Salmonella, which affect millions of humans and animals globally. In this review, we explore how organoids, derived from intestinal and pluripotent stem cells, are transforming our understanding of GI development, disease etiology, and therapeutic innovation. Through the “Zoobiquity” paradigm and “One Health” framework, we highlight the integration of companion animal organoids, which provide invaluable insights into shared disease mechanisms and preclinical therapeutic development. Despite their promise, challenges remain in achieving organoid maturation, expanding immune and neuronal integration, and bridging the gap between organoid responses and in vivo outcomes. By refining these cutting-edge platforms, we can advance human and veterinary medicine alike, fostering a holistic approach to health and disease.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Regenerative Therapy
Regenerative Therapy Engineering-Biomedical Engineering
CiteScore
6.00
自引率
2.30%
发文量
106
审稿时长
49 days
期刊介绍: Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine. Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信