Reactions最新文献

筛选
英文 中文
Inversely Finding Peculiar Reaction Conditions toward Microfluidic Droplet Synthesis 反求微流控液滴合成的特殊反应条件
Reactions Pub Date : 2023-10-16 DOI: 10.3390/reactions4040036
Takashiro Akitsu
{"title":"Inversely Finding Peculiar Reaction Conditions toward Microfluidic Droplet Synthesis","authors":"Takashiro Akitsu","doi":"10.3390/reactions4040036","DOIUrl":"https://doi.org/10.3390/reactions4040036","url":null,"abstract":"With the development of microfluidics, there are increasing reports of syntheses using not only conventional laminar flow at the microscale, but also the dissociation and aggregation of microdroplets. It is known, to some extent, that the microfluidics scale differs from normal scales in terms of the specific surface area, mass diffusion, and heat conduction; these are opposite to those in scale-up in-plant chemical engineering. However, it is not easy to determine what changes when the microdroplet flows through the channel. In this context, the author would like to clarify how the behavior of chemical species, which is expected to appear unique at the nanoscale, contributes to chemical reactions. What do we need in order to develop a completely new theory of chemical reactions? The characteristics of chemical reactions on the nanoscale are clarified via the encountering of solutions by the microfluidic device itself, or the chemical reaction of nanoscale droplets generated by the microfluidic device. Specifically, in recent years, experimental reports have accumulated that are expected to develop a fluidic device that can stably generate nanodroplets, and complex reactions of different reactivity are expected to occur that are specific to the nanoscale. In this short article, microfluidic devices, nanoscale droplets, experimental synthetic examples, and findings that may provide solutions are described.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136115575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Confinement of LiAlH4 in a Mesoporous Carbon Black for Improved Near-Ambient Release of H2 介孔炭黑对LiAlH4的约束改善H2的近环境释放
Reactions Pub Date : 2023-10-11 DOI: 10.3390/reactions4040035
Pavle Ramah, Rasmus Palm, Kenneth Tuul, Jaan Aruväli, Martin Månsson, Enn Lust
{"title":"Confinement of LiAlH4 in a Mesoporous Carbon Black for Improved Near-Ambient Release of H2","authors":"Pavle Ramah, Rasmus Palm, Kenneth Tuul, Jaan Aruväli, Martin Månsson, Enn Lust","doi":"10.3390/reactions4040035","DOIUrl":"https://doi.org/10.3390/reactions4040035","url":null,"abstract":"LiAlH4 is a potential solid-state H2 storage material, where safe and efficient H2 storage is of critical importance for the transition towards a sustainable emission-free economy. To improve the H2 release and storage properties of LiAlH4, confinement in porous media decreases the temperature of H2 release and improves the kinetics, where considerably improved H2 release properties are accompanied by a loss in the total amount of H2 released. The capability of mesoporous carbon black to improve the H2 storage properties of confined LiAlH4 is investigated with temperature-programmed desorption and time-stability measurements using X-ray diffraction and N2 gas adsorption measurements to characterize the composite materials’ composition and structure. Here, we present the capability of commercial carbon black to effectively lower the onset temperature of H2 release to that of near-ambient, ≥295 K. In addition, the confinement in mesoporous carbon black destabilized LiAlH4 to a degree that during ≤14 days in storage, under Ar atmosphere and at ambient temperature, 40% of the theoretically contained H2 was lost due to decomposition. Thus, we present the possibility of destabilizing LiAlH4 to a very high degree and, thus, avoiding the melting step before H2 release at around 440 K using scaffold materials with fine-tuned porosities.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136208611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformations of Glycerol into High-Value-Added Chemical Products: Ketalization and Esterification Reactions 甘油转化为高附加值化工产品:烷基化和酯化反应
Reactions Pub Date : 2023-10-08 DOI: 10.3390/reactions4040034
Federico M. Perez, Martin N. Gatti, Gerardo F. Santori, Francisco Pompeo
{"title":"Transformations of Glycerol into High-Value-Added Chemical Products: Ketalization and Esterification Reactions","authors":"Federico M. Perez, Martin N. Gatti, Gerardo F. Santori, Francisco Pompeo","doi":"10.3390/reactions4040034","DOIUrl":"https://doi.org/10.3390/reactions4040034","url":null,"abstract":"Biomass allows us to obtain energy and high-value-added compounds through the use of different physical and chemical processes. The glycerol obtained as a by-product in the synthesis of biodiesel is considered a biomass compound that has the potential to be used as a raw material to obtain different chemical products for industry. The development and growth of the biodiesel industry allows for the projection of glycerol biorefineries around these plants that efficiently and sustainably integrate the biodiesel production process together with the glycerol transformation processes. This work presents a review of the ketalization and esterification of glycerol to obtain solketal and acetylglycerols, which are considered products of high added value for the chemical and fuel industry. First, the general aspects and mechanisms of both reactions are presented, as well as the related chemical equilibrium concepts. Subsequently, the catalysts employed are described, classifying them according to their catalytic nature (zeolites, carbons, exchange resins, etc.). The reaction conditions used are also described, and the best results for each catalytic system are presented. In addition, stability studies and the main deactivation mechanisms are discussed. Finally, the work presents the kinetic models that have been formulated to date for some of these systems. It is expected that this review work will serve as a tool for the advancement of studies on the ketalization and esterification reactions that allow for the projection of biorefineries based on glycerol as a raw material.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135251447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicomponent Reactions Promoted by Ecocatalyst from Metal Hyperaccumulating Plant Pluchea sagittalis 金属超富集植物矢车菊生态催化剂促进多组分反应
Reactions Pub Date : 2023-10-07 DOI: 10.3390/reactions4040033
Leonardo H. R. Alponti, Monize Picinini, Ernesto A. Urquieta-Gonzalez, Caroline S. da Silva, Simone Y. S. Silva, Sebastião C. Silva, Marilene N. de Oliveira, Juliana Viera, Maria Fatima das G. F. da Silva, Arlene G. Corrêa
{"title":"Multicomponent Reactions Promoted by Ecocatalyst from Metal Hyperaccumulating Plant Pluchea sagittalis","authors":"Leonardo H. R. Alponti, Monize Picinini, Ernesto A. Urquieta-Gonzalez, Caroline S. da Silva, Simone Y. S. Silva, Sebastião C. Silva, Marilene N. de Oliveira, Juliana Viera, Maria Fatima das G. F. da Silva, Arlene G. Corrêa","doi":"10.3390/reactions4040033","DOIUrl":"https://doi.org/10.3390/reactions4040033","url":null,"abstract":"Phytoremediation has been considered a sustainable environmental technology for heavy metals decontamination. In this work, we evaluated the metal contents by inductively coupled plasma optical emission spectrometry (ICP-OES) of three plant species collected in a mine in the Brazilian Amazonia area. Based on this analysis, Pluchea sagitallis leaves were selected to prepare metallic ecocatalysts. The leaf ashes and the obtained ecocatalysts were characterized by ICP-OES, X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2-physisorption measurements. Moreover, they were evaluated in the Biginelli and Hantzsch multicomponent reactions, furnishing the corresponding 3,4-dihydropyrimidin-2-(1H)-ones and 1,4-dihydropyridines with good to excellent yields. The best ecocatalyst was easily recovered and recycled in up to six reactions without a significant decrease in its performance.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135301116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-Hydroprocessing of Fossil Middle Distillate and Bio-Derived Durene-Rich Heavy Ends under Hydrotreating Conditions 在加氢处理条件下化石中间馏分与生物衍生的富均烯重端共加氢处理
Reactions Pub Date : 2023-09-21 DOI: 10.3390/reactions4030032
David Graf, Johannes Waßmuth, Reinhard Rauch
{"title":"Co-Hydroprocessing of Fossil Middle Distillate and Bio-Derived Durene-Rich Heavy Ends under Hydrotreating Conditions","authors":"David Graf, Johannes Waßmuth, Reinhard Rauch","doi":"10.3390/reactions4030032","DOIUrl":"https://doi.org/10.3390/reactions4030032","url":null,"abstract":"Methanol-to-gasoline (MTG) and dimethyl ether-to-gasoline (DTG), as industrially approved processes for producing greenhouse gas-neutral gasoline, yield byproducts rich in heavy mono-ring aromatics such as 1,2,4,5-tetramethylbenzene (durene). Due to its tendency to crystallize and the overall poor fuel performance, the heavy fuel fraction is usually further processed using after-treatment units designed for this purpose. This research article discusses the co-hydroprocessing (HP) of bio-derived heavy gasoline (HG) with fossil middle distillate (MD), drawing on available refinery hydrotreaters. Co-HP experiments were conducted in a laboratory-scale fixed bed reactor using an industrial CoMo/γ-Al2O3 catalyst, varying the space-time between 0.7 and 4.0 cmCat3 h cmFeed−3 and the reaction temperature between 340 and 390 °C. In addition to the durene conversion, special attention was paid to the octane and cetane numbers (CN) of gasoline and MD, respectively. A six-lump model with ten parameters was developed to predict relevant fuel yields dependent on the process conditions. Under stable catalyst conditions, C10 aromatic conversions of more than 60% were obtained, while the CN remained close to that of pure MD. Harsh process conditions increased the gasoline yield up to 20% at the cost of MD, while the kerosene yield remained almost constant. With an optimized lumping model, fuel yields could be predicted with an R2 of 0.998. In this study, co-HP heavy aromatic-rich MTG/DTG fuels with fossil MD were proven to be a promising process strategy compared to a stand-alone after-treatment.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136237018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Bio- and Chemo-Catalysts for the Synthesis of Flavour Compound Hexanal from Linoleic Acid 亚油酸合成风味化合物己醛的生物与化学催化剂对比分析
Reactions Pub Date : 2023-09-18 DOI: 10.3390/reactions4030031
Jan Drönner, Valentin Gala Marti, Simone Bandte, Anna Coenen, Ulrich Schörken, Matthias Eisenacher
{"title":"Comparative Analysis of Bio- and Chemo-Catalysts for the Synthesis of Flavour Compound Hexanal from Linoleic Acid","authors":"Jan Drönner, Valentin Gala Marti, Simone Bandte, Anna Coenen, Ulrich Schörken, Matthias Eisenacher","doi":"10.3390/reactions4030031","DOIUrl":"https://doi.org/10.3390/reactions4030031","url":null,"abstract":"Hexanal, hexenal, nonenal and their corresponding alcohols are used as green notes in the fragrance and flavour industry. The production of bio-based hexanal starts from linoleic acid, which can be obtained from sunflower or safflower oil. The biocatalytic process utilizes C13-specific lipoxygenase (LOX) for hydroperoxidation and consecutive splitting with hydroperoxide lyase (HPL). In this study, we investigated the chemical splitting of the LOX product 13-HPODE in comparison to HPL catalysis. In addition, 13-HPODE was synthesized using enriched linoleic acid from safflower oil. Varying amounts of soybean flour suspension as a source of LOX yielded up to 60% HPODE with a regioselectivity of 92% towards 13-HPODE. Using low-toxicity Lewis acids like AlCl3 and ZrCl4, cleavage of the produced 13-HPODE was possible. A maximum hexanal yield of 22.9% was reached with AlCl3 under mild reaction conditions, though product degradation was an interfering process. Comparative trials with N-terminal truncated HPL from papaya revealed hexanal recovery within a comparable range. Additionally, we successfully demonstrated the viability of Hock rearrangement of 13-HPODE through heterogeneous catalysts. Notably, Beta zeolite and Montmorillonite K10 exhibited a turnover frequency (TOF) on par with common heterogeneous catalysts employed in industrial processes.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135202746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full Factorial Design Synthesis of Silver Nanoparticles Using Origanum vulgare 全因子设计合成银纳米颗粒的研究
Reactions Pub Date : 2023-09-14 DOI: 10.3390/reactions4030030
Nickolas Rigopoulos, Christina Megetho Gkaliouri, Viktoria Sakavitsi, Dimitrios Gournis
{"title":"Full Factorial Design Synthesis of Silver Nanoparticles Using Origanum vulgare","authors":"Nickolas Rigopoulos, Christina Megetho Gkaliouri, Viktoria Sakavitsi, Dimitrios Gournis","doi":"10.3390/reactions4030030","DOIUrl":"https://doi.org/10.3390/reactions4030030","url":null,"abstract":"Green synthesis of silver nanoparticles (AgNPs) involves a reduction reaction of a metal salt solution mixed with a plant extract. The reaction yield can be controlled using several independent factors, such as extract and metal concentration, temperature, and incubation time. AgNPs from Origanum vulgare (oregano) were synthesized in the past. However, no investigations were performed on the combined effects of independent factors that affect the synthesis. In this work, silver nitrate, oregano extract, and sodium hydroxide (NaOH) concentrations were chosen as the independent factors, and full factorial design under Response Surface Methodology was employed. UV–Vis absorbance spectroscopy, X-ray Powder Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterize the nanoparticles. A Voigt function was fitted on the measured UV–Vis spectra. The fitting parameters of the Voigt function, peak wavelength, area, and Full Width at Half Maximum, were used as the responses. A quadratic model was fitted for the peak wavelength and area. The NaOH concentration proved to be the dominant factor in nanoparticle synthesis. UV–Vis absorbance showed a characteristic plasmon resonance of AgNPs at 409 nm. XRD verified the crystallinity of the nanoparticles and FTIR identified the ligands involved.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134911956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in the Synthesis of Pyrazole Derivatives: A Review 吡唑衍生物的合成研究进展
Reactions Pub Date : 2023-09-05 DOI: 10.3390/reactions4030029
Issam Ameziane El Hassani, Khouloud Rouzi, Hamza Assila, K. Karrouchi, M. Ansar
{"title":"Recent Advances in the Synthesis of Pyrazole Derivatives: A Review","authors":"Issam Ameziane El Hassani, Khouloud Rouzi, Hamza Assila, K. Karrouchi, M. Ansar","doi":"10.3390/reactions4030029","DOIUrl":"https://doi.org/10.3390/reactions4030029","url":null,"abstract":"Pyrazole, characterized by a five-membered heterocyclic structure featuring two neighboring nitrogen atoms, serves as a core element. Pyrazoles hold a privileged status as versatile frameworks in various sectors of the chemical industry, including medicine and agriculture. Previous reviews have extensively highlighted the significance of pyrazoles and their diverse biological activities, encompassing roles such as antituberculosis, antimicrobial, antifungal, anti-inflammatory, anticancer, and antidiabetic agents. Consequently, they have garnered substantial interest from researchers. The aim of this review is to offer a comprehensive overview of the published research related to the synthesis of pyrazole derivatives, encompassing a discussion of diverse methods for accessing the pyrazole moiety. These methods span from utilizing transition-metal catalysts and photoredox reactions to employing one-pot multicomponent processes, novel reactants, and innovative reaction types. It encompasses studies conducted by numerous scientists worldwide, showcasing collective efforts in advancing the methodologies and applications of pyrazole derivatives.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80389338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Catalytic Valorisation of Biomass-Derived Levulinic Acid to Biofuel Additive γ-Valerolactone: Influence of Copper Loading on Silica Support 生物质衍生乙酰丙酸对生物燃料添加剂γ-戊内酯的催化增值:铜负载对二氧化硅载体的影响
Reactions Pub Date : 2023-09-05 DOI: 10.3390/reactions4030028
Rajender Boddula, Paramasivam Shanmugam, Rajesh K. Srivatsava, Nabila Tabassum, Ramyakrishna Pothu, R. Naik, Aditya Saran, B. Viswanadham, A. B. Radwan, N. Al-Qahtani
{"title":"Catalytic Valorisation of Biomass-Derived Levulinic Acid to Biofuel Additive γ-Valerolactone: Influence of Copper Loading on Silica Support","authors":"Rajender Boddula, Paramasivam Shanmugam, Rajesh K. Srivatsava, Nabila Tabassum, Ramyakrishna Pothu, R. Naik, Aditya Saran, B. Viswanadham, A. B. Radwan, N. Al-Qahtani","doi":"10.3390/reactions4030028","DOIUrl":"https://doi.org/10.3390/reactions4030028","url":null,"abstract":"γ-valerolactone (GVL) is a crucial chemical feedstock used in the production of fuel additives, renewable fuels, and fine chemicals alternative to petroleum-based solvents and chemicals, supporting the transition to sustainable energy solutions. It is promptly acquired by hydrogenating levulinic acid (LA) in a gaseous or liquid phase with a homogeneous or heterogeneous catalyst using a variety of recognized catalytic processes. Herein, this work focuses on the use of silica-supported copper (Cu/SiO2) catalysts for the gas-phase hydrogenation of LA to GVL under mild reaction conditions. The study analyzes how copper loading can affect the catalytic activity of the Cu/SiO2, while the flow rate of LA, time-on-stream, reaction temperature, and LA concentration affect the catalytic efficiency. The SiO2 support’s various Cu loadings are crucial for adjusting the catalytic hydrogenation activity. One of the studied catalysts, a 5 wt% Cu/SiO2 catalyst, demonstrated ~81% GVL selectivity with ~78% LA conversion and demonstrated stability for ~8 h while operating at atmospheric pressure and temperature (265 °C) and 0.5 mL/h of LA flow rate. The ability to activate hydrogen, high amount of acidic sites, and surface area were all discovered to be advantageous for increased GVL selectivity.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76261077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
One-Pot Synthesis of Stable Poly([c2]Daisy–chain Rotaxane) with Pseudo-Stopper via Metathesis Reaction and Thiol-Ene Reaction 通过复分解反应和巯基烯反应一锅合成具有伪塞的稳定聚([c2]菊链轮烷)
Reactions Pub Date : 2023-08-23 DOI: 10.3390/reactions4030027
Risako Kamoto, K. Onimura, K. Yamabuki
{"title":"One-Pot Synthesis of Stable Poly([c2]Daisy–chain Rotaxane) with Pseudo-Stopper via Metathesis Reaction and Thiol-Ene Reaction","authors":"Risako Kamoto, K. Onimura, K. Yamabuki","doi":"10.3390/reactions4030027","DOIUrl":"https://doi.org/10.3390/reactions4030027","url":null,"abstract":"Rotaxanes, known as supramolecular compounds, are expected to find applications in functional materials due to their high degree of freedom. However, their synthesis requires multistep reactions, and there is a demand for more convenient methods to synthesize rotaxane materials. In this study, we aimed to investigate a simpler method for synthesizing highly functional rotaxane materials and explore the diversity of molecular designs. To achieve this, we successfully synthesized a host–guest conjugated compound that incorporates both crown ether as the host unit and secondary ammonium salts as the guest unit within the same molecule. Subsequently, the metathesis reaction of these compounds, which construct [c2]daisy-chain rotaxanes, enabled the one-pot synthesis of a topological polymer called “poly([c2]daisy-chain rotaxane)” with a pseudo-stopper. This methodology achieves the stabilization and polymerization of rotaxanes simultaneously, contributing to the easy materialization of rotaxanes. Furthermore, the thiol-ene reaction achieved the extension of the distance between rotaxane units and provided a useful approach to diversify the design of functional materials with rotaxane structures.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86280766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信