Leonardo H. R. Alponti, Monize Picinini, Ernesto A. Urquieta-Gonzalez, Caroline S. da Silva, Simone Y. S. Silva, Sebastião C. Silva, Marilene N. de Oliveira, Juliana Viera, Maria Fatima das G. F. da Silva, Arlene G. Corrêa
{"title":"金属超富集植物矢车菊生态催化剂促进多组分反应","authors":"Leonardo H. R. Alponti, Monize Picinini, Ernesto A. Urquieta-Gonzalez, Caroline S. da Silva, Simone Y. S. Silva, Sebastião C. Silva, Marilene N. de Oliveira, Juliana Viera, Maria Fatima das G. F. da Silva, Arlene G. Corrêa","doi":"10.3390/reactions4040033","DOIUrl":null,"url":null,"abstract":"Phytoremediation has been considered a sustainable environmental technology for heavy metals decontamination. In this work, we evaluated the metal contents by inductively coupled plasma optical emission spectrometry (ICP-OES) of three plant species collected in a mine in the Brazilian Amazonia area. Based on this analysis, Pluchea sagitallis leaves were selected to prepare metallic ecocatalysts. The leaf ashes and the obtained ecocatalysts were characterized by ICP-OES, X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2-physisorption measurements. Moreover, they were evaluated in the Biginelli and Hantzsch multicomponent reactions, furnishing the corresponding 3,4-dihydropyrimidin-2-(1H)-ones and 1,4-dihydropyridines with good to excellent yields. The best ecocatalyst was easily recovered and recycled in up to six reactions without a significant decrease in its performance.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicomponent Reactions Promoted by Ecocatalyst from Metal Hyperaccumulating Plant Pluchea sagittalis\",\"authors\":\"Leonardo H. R. Alponti, Monize Picinini, Ernesto A. Urquieta-Gonzalez, Caroline S. da Silva, Simone Y. S. Silva, Sebastião C. Silva, Marilene N. de Oliveira, Juliana Viera, Maria Fatima das G. F. da Silva, Arlene G. Corrêa\",\"doi\":\"10.3390/reactions4040033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phytoremediation has been considered a sustainable environmental technology for heavy metals decontamination. In this work, we evaluated the metal contents by inductively coupled plasma optical emission spectrometry (ICP-OES) of three plant species collected in a mine in the Brazilian Amazonia area. Based on this analysis, Pluchea sagitallis leaves were selected to prepare metallic ecocatalysts. The leaf ashes and the obtained ecocatalysts were characterized by ICP-OES, X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2-physisorption measurements. Moreover, they were evaluated in the Biginelli and Hantzsch multicomponent reactions, furnishing the corresponding 3,4-dihydropyrimidin-2-(1H)-ones and 1,4-dihydropyridines with good to excellent yields. The best ecocatalyst was easily recovered and recycled in up to six reactions without a significant decrease in its performance.\",\"PeriodicalId\":20873,\"journal\":{\"name\":\"Reactions\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/reactions4040033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/reactions4040033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multicomponent Reactions Promoted by Ecocatalyst from Metal Hyperaccumulating Plant Pluchea sagittalis
Phytoremediation has been considered a sustainable environmental technology for heavy metals decontamination. In this work, we evaluated the metal contents by inductively coupled plasma optical emission spectrometry (ICP-OES) of three plant species collected in a mine in the Brazilian Amazonia area. Based on this analysis, Pluchea sagitallis leaves were selected to prepare metallic ecocatalysts. The leaf ashes and the obtained ecocatalysts were characterized by ICP-OES, X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2-physisorption measurements. Moreover, they were evaluated in the Biginelli and Hantzsch multicomponent reactions, furnishing the corresponding 3,4-dihydropyrimidin-2-(1H)-ones and 1,4-dihydropyridines with good to excellent yields. The best ecocatalyst was easily recovered and recycled in up to six reactions without a significant decrease in its performance.