Quantum Science and Technology最新文献

筛选
英文 中文
Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithms 在自适应变分量子算法中通过回收赫塞斯降低测量成本
IF 6.7 2区 物理与天体物理
Quantum Science and Technology Pub Date : 2024-11-18 DOI: 10.1088/2058-9565/ad904e
Mafalda Ramôa, Luis Paulo Santos, Nicholas J Mayhall, Edwin Barnes and Sophia E Economou
{"title":"Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithms","authors":"Mafalda Ramôa, Luis Paulo Santos, Nicholas J Mayhall, Edwin Barnes and Sophia E Economou","doi":"10.1088/2058-9565/ad904e","DOIUrl":"https://doi.org/10.1088/2058-9565/ad904e","url":null,"abstract":"Adaptive protocols enable the construction of more efficient state preparation circuits in variational quantum algorithms (VQAs) by utilizing data obtained from the quantum processor during the execution of the algorithm. This idea originated with Adaptive Derivative-Assembled Problem-Tailored variational quantum eigensolver (ADAPT-VQE), an algorithm that iteratively grows the state preparation circuit operator by operator, with each new operator accompanied by a new variational parameter, and where all parameters acquired thus far are optimized in each iteration. In ADAPT-VQE and other adaptive VQAs that followed it, it has been shown that initializing parameters to their optimal values from the previous iteration speeds up convergence and avoids shallow local traps in the parameter landscape. However, no other data from the optimization performed at one iteration is carried over to the next. In this work, we propose an improved quasi-Newton optimization protocol specifically tailored to adaptive VQAs. The distinctive feature in our proposal is that approximate second derivatives of the cost function are recycled across iterations in addition to optimal parameter values. We implement a quasi-Newton optimizer where an approximation to the inverse Hessian matrix is continuously built and grown across the iterations of an adaptive VQA. The resulting algorithm has the flavor of a continuous optimization where the dimension of the search space is augmented when the gradient norm falls below a given threshold. We show that this inter-optimization exchange of second-order information leads the approximate Hessian in the state of the optimizer to be consistently closer to the exact Hessian. As a result, our method achieves a superlinear convergence rate even in situations where the typical implementation of a quasi-Newton optimizer converges only linearly. Our protocol decreases the measurement costs in implementing adaptive VQAs on quantum hardware as well as the runtime of their classical simulation.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"80 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ramsey interferometry of nuclear spins in diamond using stimulated Raman adiabatic passage 利用受激拉曼绝热通过对钻石中的核自旋进行拉姆齐干涉测量
IF 6.7 2区 物理与天体物理
Quantum Science and Technology Pub Date : 2024-11-18 DOI: 10.1088/2058-9565/ad8d07
Sean Lourette, Andrey Jarmola, Jabir Chathanathil, Sebastián C Carrasco, Dmitry Budker, Svetlana A Malinovskaya, A Glen Birdwell, Tony G Ivanov and Vladimir S Malinovsky
{"title":"Ramsey interferometry of nuclear spins in diamond using stimulated Raman adiabatic passage","authors":"Sean Lourette, Andrey Jarmola, Jabir Chathanathil, Sebastián C Carrasco, Dmitry Budker, Svetlana A Malinovskaya, A Glen Birdwell, Tony G Ivanov and Vladimir S Malinovsky","doi":"10.1088/2058-9565/ad8d07","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8d07","url":null,"abstract":"We report the first experimental demonstration of stimulated Raman adiabatic passage (STIRAP) in nuclear-spin transitions of 14N within nitrogen-vacancy color centers in diamond. It is shown that the STIRAP technique suppresses the occupation of the intermediate state, which is a crucial factor for improvements in quantum sensing technology. Building on that advantage, we develop and implement a generalized version of the Ramsey interferometric scheme, employing half-STIRAP pulses to perform the necessary quantum-state manipulation with high fidelity. The enhanced robustness of the STIRAP-based Ramsey scheme to variations in the pulse parameters is experimentally demonstrated, showing good agreement with theoretical predictions. Our results pave the way for improving the long-term stability of diamond-based sensors, such as gyroscopes and frequency standards.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"99 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Permutation-equivariant quantum convolutional neural networks 置换量子卷积神经网络
IF 6.7 2区 物理与天体物理
Quantum Science and Technology Pub Date : 2024-11-15 DOI: 10.1088/2058-9565/ad8e80
Sreetama Das and Filippo Caruso
{"title":"Permutation-equivariant quantum convolutional neural networks","authors":"Sreetama Das and Filippo Caruso","doi":"10.1088/2058-9565/ad8e80","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8e80","url":null,"abstract":"The Symmetric group Sn manifests itself in large classes of quantum systems as the invariance of certain characteristics of a quantum state with respect to permuting the qubits. Subgroups of Sn arise, among many other contexts, to describe label symmetry of classical images with respect to spatial transformations, such as reflection or rotation. Equipped with the formalism of geometric quantum machine learning, in this study we propose the architectures of equivariant quantum convolutional neural networks (EQCNNs) adherent to Sn and its subgroups. We demonstrate that a careful choice of pixel-to-qubit embedding order can facilitate easy construction of EQCNNs for small subgroups of Sn. Our novel EQCNN architecture corresponding to the full permutation group Sn is built by applying all possible QCNNs with equal probability, which can also be conceptualized as a dropout strategy in quantum neural networks. For subgroups of Sn, our numerical results using MNIST datasets show better classification accuracy than non-equivariant QCNNs. The Sn-equivariant QCNN architecture shows significantly improved training and test performance than non-equivariant QCNN for classification of connected and non-connected graphs. When trained with sufficiently large number of data, the Sn-equivariant QCNN shows better average performance compared to Sn-equivariant QNN . These results contribute towards building powerful quantum machine learning architectures in permutation-symmetric systems.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"25 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the nonclassicality within quasi-distribution representations through deep learning 通过深度学习揭示准分布表征的非经典性
IF 6.7 2区 物理与天体物理
Quantum Science and Technology Pub Date : 2024-11-15 DOI: 10.1088/2058-9565/ad8ef0
Hong-Bin Chen, Cheng-Hua Liu, Kuan-Lun Lai, Bor-Yann Tseng, Ping-Yuan Lo, Yueh-Nan Chen and Chi-Hua Yu
{"title":"Unveiling the nonclassicality within quasi-distribution representations through deep learning","authors":"Hong-Bin Chen, Cheng-Hua Liu, Kuan-Lun Lai, Bor-Yann Tseng, Ping-Yuan Lo, Yueh-Nan Chen and Chi-Hua Yu","doi":"10.1088/2058-9565/ad8ef0","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8ef0","url":null,"abstract":"To unequivocally distinguish genuine quantumness from classicality, a widely adopted approach focuses on the negative values of a quasi-distribution representation as compelling evidence of nonclassicality. Prominent examples include the dynamical process nonclassicality characterized by the canonical Hamiltonian ensemble representation (CHER) and the nonclassicality of quantum states characterized by the Wigner function. However, to construct a multivariate joint quasi-distribution function with negative values from experimental data is typically highly cumbersome. Here we propose a computational approach utilizing a deep generative model, processing three marginals, to construct the bivariate joint quasi-distribution functions. We first apply our model to tackle the challenging problem of the CHERs, which lacks universal solutions, rendering the problem ground-truth (GT) deficient. To overcome the GT deficiency of the CHER problem, we design optimal synthetic datasets to train our model. While trained with synthetic data, the physics-informed optimization enables our model to capture the detrimental effect of the thermal fluctuations on nonclassicality, which cannot be obtained from any analytical solutions. This underscores the reliability of our approach. This approach also allows us to predict the Wigner functions subject to thermal noises. Our model predicts the Wigner functions with a prominent accuracy by processing three marginals of probability distributions. Our approach also provides a significant reduction of the experimental efforts of constructing the Wigner functions of quantum states, giving rise to an efficient alternative way to realize the quantum state tomography.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"20 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High coherence plane breaking packaging for superconducting qubits. 超导量子比特的高相干平面破缺封装。
IF 6.7 2区 物理与天体物理
Quantum Science and Technology Pub Date : 2018-04-01 Epub Date: 2018-02-07 DOI: 10.1088/2058-9565/aaa645
Nicholas T Bronn, Vivekananda P Adiga, Salvatore B Olivadese, Xian Wu, Jerry M Chow, David P Pappas
{"title":"High coherence plane breaking packaging for superconducting qubits.","authors":"Nicholas T Bronn, Vivekananda P Adiga, Salvatore B Olivadese, Xian Wu, Jerry M Chow, David P Pappas","doi":"10.1088/2058-9565/aaa645","DOIUrl":"10.1088/2058-9565/aaa645","url":null,"abstract":"<p><p>We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.</p>","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"3 2","pages":""},"PeriodicalIF":6.7,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927379/pdf/nihms961227.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36069651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigidity of the magic pentagram game. 魔法五角星游戏的刚性。
IF 6.7 2区 物理与天体物理
Quantum Science and Technology Pub Date : 2018-01-01 Epub Date: 2017-11-02 DOI: 10.1088/2058-9565/aa931d
Amir Kalev, Carl A Miller
{"title":"Rigidity of the magic pentagram game.","authors":"Amir Kalev,&nbsp;Carl A Miller","doi":"10.1088/2058-9565/aa931d","DOIUrl":"https://doi.org/10.1088/2058-9565/aa931d","url":null,"abstract":"<p><p>A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.</p>","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/2058-9565/aa931d","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35821223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信