量子干涉探测量子发射体的大加速

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Warwick P Bowen
{"title":"量子干涉探测量子发射体的大加速","authors":"Warwick P Bowen","doi":"10.1088/2058-9565/ae0e4f","DOIUrl":null,"url":null,"abstract":"Quantum emitters are a key resource in quantum technologies, microscopy, and other applications. The ability to rapidly detect them is useful both for quality control in engineered emitter arrays and for high-contrast imaging of naturally occurring emitters. Using full photon-counting statistics and optimal Bayesian hypothesis testing, we show that extended Hong–Ou–Mandel (HOM) interference between quantum emission and a coherent field enables orders-of-magnitude speed-ups in emitter detection under realistic noise and loss. Strikingly, the performance advantage improves as loss and background noise increase, and persists for incoherent emission. Taken together with prior demonstrations of extended HOM interference, this suggest that substantial performance gains are achievable with current technology under realistic, non-ideal conditions. This offers a new approach to fast, low-intensity imaging and for emitter characterization in large-scale quantum systems. Fundamentally, the discovery that quantum interference and measurements, used together, are more robust to both loss and noise than standard measurement techniques opens the possibility of broad applications across quantum metrology.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large speed-up of quantum emitter detection via quantum interference\",\"authors\":\"Warwick P Bowen\",\"doi\":\"10.1088/2058-9565/ae0e4f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum emitters are a key resource in quantum technologies, microscopy, and other applications. The ability to rapidly detect them is useful both for quality control in engineered emitter arrays and for high-contrast imaging of naturally occurring emitters. Using full photon-counting statistics and optimal Bayesian hypothesis testing, we show that extended Hong–Ou–Mandel (HOM) interference between quantum emission and a coherent field enables orders-of-magnitude speed-ups in emitter detection under realistic noise and loss. Strikingly, the performance advantage improves as loss and background noise increase, and persists for incoherent emission. Taken together with prior demonstrations of extended HOM interference, this suggest that substantial performance gains are achievable with current technology under realistic, non-ideal conditions. This offers a new approach to fast, low-intensity imaging and for emitter characterization in large-scale quantum systems. Fundamentally, the discovery that quantum interference and measurements, used together, are more robust to both loss and noise than standard measurement techniques opens the possibility of broad applications across quantum metrology.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ae0e4f\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ae0e4f","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子发射体是量子技术、显微镜和其他应用中的关键资源。快速检测它们的能力对于工程发射体阵列的质量控制和自然产生的发射体的高对比度成像都是有用的。利用全光子计数统计和最优贝叶斯假设检验,我们证明了量子发射和相干场之间的扩展Hong-Ou-Mandel (HOM)干涉可以在实际噪声和损失下实现发射器检测的数量级加速。引人注目的是,性能优势随着损耗和背景噪声的增加而提高,并且在非相干发射中持续存在。结合先前的扩展HOM干扰的演示,这表明在现实的、非理想的条件下,使用当前技术可以实现实质性的性能提升。这为大规模量子系统中的快速、低强度成像和发射极表征提供了一种新方法。从根本上说,量子干涉和测量一起使用,比标准测量技术对损耗和噪声的鲁棒性更强,这一发现打开了量子计量广泛应用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large speed-up of quantum emitter detection via quantum interference
Quantum emitters are a key resource in quantum technologies, microscopy, and other applications. The ability to rapidly detect them is useful both for quality control in engineered emitter arrays and for high-contrast imaging of naturally occurring emitters. Using full photon-counting statistics and optimal Bayesian hypothesis testing, we show that extended Hong–Ou–Mandel (HOM) interference between quantum emission and a coherent field enables orders-of-magnitude speed-ups in emitter detection under realistic noise and loss. Strikingly, the performance advantage improves as loss and background noise increase, and persists for incoherent emission. Taken together with prior demonstrations of extended HOM interference, this suggest that substantial performance gains are achievable with current technology under realistic, non-ideal conditions. This offers a new approach to fast, low-intensity imaging and for emitter characterization in large-scale quantum systems. Fundamentally, the discovery that quantum interference and measurements, used together, are more robust to both loss and noise than standard measurement techniques opens the possibility of broad applications across quantum metrology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信