{"title":"量子干涉探测量子发射体的大加速","authors":"Warwick P Bowen","doi":"10.1088/2058-9565/ae0e4f","DOIUrl":null,"url":null,"abstract":"Quantum emitters are a key resource in quantum technologies, microscopy, and other applications. The ability to rapidly detect them is useful both for quality control in engineered emitter arrays and for high-contrast imaging of naturally occurring emitters. Using full photon-counting statistics and optimal Bayesian hypothesis testing, we show that extended Hong–Ou–Mandel (HOM) interference between quantum emission and a coherent field enables orders-of-magnitude speed-ups in emitter detection under realistic noise and loss. Strikingly, the performance advantage improves as loss and background noise increase, and persists for incoherent emission. Taken together with prior demonstrations of extended HOM interference, this suggest that substantial performance gains are achievable with current technology under realistic, non-ideal conditions. This offers a new approach to fast, low-intensity imaging and for emitter characterization in large-scale quantum systems. Fundamentally, the discovery that quantum interference and measurements, used together, are more robust to both loss and noise than standard measurement techniques opens the possibility of broad applications across quantum metrology.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large speed-up of quantum emitter detection via quantum interference\",\"authors\":\"Warwick P Bowen\",\"doi\":\"10.1088/2058-9565/ae0e4f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum emitters are a key resource in quantum technologies, microscopy, and other applications. The ability to rapidly detect them is useful both for quality control in engineered emitter arrays and for high-contrast imaging of naturally occurring emitters. Using full photon-counting statistics and optimal Bayesian hypothesis testing, we show that extended Hong–Ou–Mandel (HOM) interference between quantum emission and a coherent field enables orders-of-magnitude speed-ups in emitter detection under realistic noise and loss. Strikingly, the performance advantage improves as loss and background noise increase, and persists for incoherent emission. Taken together with prior demonstrations of extended HOM interference, this suggest that substantial performance gains are achievable with current technology under realistic, non-ideal conditions. This offers a new approach to fast, low-intensity imaging and for emitter characterization in large-scale quantum systems. Fundamentally, the discovery that quantum interference and measurements, used together, are more robust to both loss and noise than standard measurement techniques opens the possibility of broad applications across quantum metrology.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ae0e4f\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ae0e4f","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Large speed-up of quantum emitter detection via quantum interference
Quantum emitters are a key resource in quantum technologies, microscopy, and other applications. The ability to rapidly detect them is useful both for quality control in engineered emitter arrays and for high-contrast imaging of naturally occurring emitters. Using full photon-counting statistics and optimal Bayesian hypothesis testing, we show that extended Hong–Ou–Mandel (HOM) interference between quantum emission and a coherent field enables orders-of-magnitude speed-ups in emitter detection under realistic noise and loss. Strikingly, the performance advantage improves as loss and background noise increase, and persists for incoherent emission. Taken together with prior demonstrations of extended HOM interference, this suggest that substantial performance gains are achievable with current technology under realistic, non-ideal conditions. This offers a new approach to fast, low-intensity imaging and for emitter characterization in large-scale quantum systems. Fundamentally, the discovery that quantum interference and measurements, used together, are more robust to both loss and noise than standard measurement techniques opens the possibility of broad applications across quantum metrology.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.