具有线性量子反馈的玻色-爱因斯坦凝聚体的多模冷却

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Zain Mehdi, Matthew L Goh, Matthew J Blacker, Joseph J Hope and Stuart S Szigeti
{"title":"具有线性量子反馈的玻色-爱因斯坦凝聚体的多模冷却","authors":"Zain Mehdi, Matthew L Goh, Matthew J Blacker, Joseph J Hope and Stuart S Szigeti","doi":"10.1088/2058-9565/ae0a7c","DOIUrl":null,"url":null,"abstract":"We theoretically investigate measurement-based feedback control over the motional degrees of freedom of an oblate quasi-2D atomic Bose–Einstein condensate (BEC) subject to continuous density monitoring. We develop a linear-quadratic-Gaussian model that describes the multi-mode dynamics of the condensate’s collective excitations under continuous measurement and control. Crucially, the multi-mode cold-damping feedback control we consider uses a realistic state-estimation scheme that does not rely upon a particular model of the atomic dynamics. We present analytical results showing that collective excitations can be cooled to below single-phonon average occupation (ground-state cooling) across a broad parameter regime, and identify the conditions under which the lowest steady-state phonon occupation is asymptotically achieved. Further, we develop multi-objective optimization methods that explore the trade-off between cooling speed and the final energy of the cloud, and provide numerical simulations demonstrating the ground-state cooling of the lowest ten motional modes above the condensate ground state. Our investigation provides concrete guidance on the feedback control design and parameters needed to experimentally realize a feedback-cooled BEC.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"122 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-mode cooling of a Bose–Einstein condensate with linear quantum feedback\",\"authors\":\"Zain Mehdi, Matthew L Goh, Matthew J Blacker, Joseph J Hope and Stuart S Szigeti\",\"doi\":\"10.1088/2058-9565/ae0a7c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically investigate measurement-based feedback control over the motional degrees of freedom of an oblate quasi-2D atomic Bose–Einstein condensate (BEC) subject to continuous density monitoring. We develop a linear-quadratic-Gaussian model that describes the multi-mode dynamics of the condensate’s collective excitations under continuous measurement and control. Crucially, the multi-mode cold-damping feedback control we consider uses a realistic state-estimation scheme that does not rely upon a particular model of the atomic dynamics. We present analytical results showing that collective excitations can be cooled to below single-phonon average occupation (ground-state cooling) across a broad parameter regime, and identify the conditions under which the lowest steady-state phonon occupation is asymptotically achieved. Further, we develop multi-objective optimization methods that explore the trade-off between cooling speed and the final energy of the cloud, and provide numerical simulations demonstrating the ground-state cooling of the lowest ten motional modes above the condensate ground state. Our investigation provides concrete guidance on the feedback control design and parameters needed to experimentally realize a feedback-cooled BEC.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ae0a7c\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ae0a7c","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们从理论上研究了基于测量的反馈控制在连续密度监测下椭球准二维原子玻色-爱因斯坦凝聚体(BEC)的运动自由度。我们建立了一个线性二次高斯模型,描述了在连续测量和控制下凝结水集体激励的多模动力学。至关重要的是,我们考虑的多模冷阻尼反馈控制使用一种现实的状态估计方案,不依赖于特定的原子动力学模型。我们提出的分析结果表明,集体激发可以在广泛的参数范围内冷却到低于单声子平均占用(基态冷却),并确定了最低稳态声子占用渐近实现的条件。此外,我们开发了多目标优化方法,探索冷却速度和云的最终能量之间的权衡,并提供了数值模拟,展示了冷凝基态以上最低十种运动模式的基态冷却。本文的研究为实验实现反馈冷却BEC所需的反馈控制设计和参数提供了具体的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-mode cooling of a Bose–Einstein condensate with linear quantum feedback
We theoretically investigate measurement-based feedback control over the motional degrees of freedom of an oblate quasi-2D atomic Bose–Einstein condensate (BEC) subject to continuous density monitoring. We develop a linear-quadratic-Gaussian model that describes the multi-mode dynamics of the condensate’s collective excitations under continuous measurement and control. Crucially, the multi-mode cold-damping feedback control we consider uses a realistic state-estimation scheme that does not rely upon a particular model of the atomic dynamics. We present analytical results showing that collective excitations can be cooled to below single-phonon average occupation (ground-state cooling) across a broad parameter regime, and identify the conditions under which the lowest steady-state phonon occupation is asymptotically achieved. Further, we develop multi-objective optimization methods that explore the trade-off between cooling speed and the final energy of the cloud, and provide numerical simulations demonstrating the ground-state cooling of the lowest ten motional modes above the condensate ground state. Our investigation provides concrete guidance on the feedback control design and parameters needed to experimentally realize a feedback-cooled BEC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信