Hubert Lam, Juan R Álvarez, Petr Steindl, Ilse Maillette de Buy Wenniger, Stephen Wein, Anton Pishchagin, Thi Huong Au, Sebastien Boissier, Aristide Lemaître, Wolfgang Löffler, Nadia Belabas, Dario A Fioretto and Pascale Senellart
{"title":"利用光子相关优化单光子与本振之间的量子干涉","authors":"Hubert Lam, Juan R Álvarez, Petr Steindl, Ilse Maillette de Buy Wenniger, Stephen Wein, Anton Pishchagin, Thi Huong Au, Sebastien Boissier, Aristide Lemaître, Wolfgang Löffler, Nadia Belabas, Dario A Fioretto and Pascale Senellart","doi":"10.1088/2058-9565/ae0a7a","DOIUrl":null,"url":null,"abstract":"The quantum interference between a coherent state and a single photon is an important tool in continuous variable optical quantum technologies to characterize and engineer non-Gaussian quantum states. Semiconductor quantum dots (QDs), which have recently emerged as a key platform for efficient single-photon generation, could become interesting assets in this context. An essential parameter for interfering single photons and classical fields is the mean wavepacket overlap between both fields. Here, we report on two homodyne photon-correlation techniques enabling the precise measurement of the overlap between a single photon generated by a QD-cavity device and pulsed laser light. The different statistics of interfering fields lead to specific signatures of the quantum interference on the photon correlations at the output of the interfering beam splitter. We compare the behavior of maximized overlap, measuring either the Hong–Ou–Mandel visibility between both outputs or the photon bunching at a single output. Through careful tailoring of the laser light in various degrees of freedom, we achieve a record overlap of with integrated solid-state sources, which evidences the very low level of noise in our integrated single-photon sources.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"218 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the quantum interference between single photons and local oscillator with photon correlations\",\"authors\":\"Hubert Lam, Juan R Álvarez, Petr Steindl, Ilse Maillette de Buy Wenniger, Stephen Wein, Anton Pishchagin, Thi Huong Au, Sebastien Boissier, Aristide Lemaître, Wolfgang Löffler, Nadia Belabas, Dario A Fioretto and Pascale Senellart\",\"doi\":\"10.1088/2058-9565/ae0a7a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantum interference between a coherent state and a single photon is an important tool in continuous variable optical quantum technologies to characterize and engineer non-Gaussian quantum states. Semiconductor quantum dots (QDs), which have recently emerged as a key platform for efficient single-photon generation, could become interesting assets in this context. An essential parameter for interfering single photons and classical fields is the mean wavepacket overlap between both fields. Here, we report on two homodyne photon-correlation techniques enabling the precise measurement of the overlap between a single photon generated by a QD-cavity device and pulsed laser light. The different statistics of interfering fields lead to specific signatures of the quantum interference on the photon correlations at the output of the interfering beam splitter. We compare the behavior of maximized overlap, measuring either the Hong–Ou–Mandel visibility between both outputs or the photon bunching at a single output. Through careful tailoring of the laser light in various degrees of freedom, we achieve a record overlap of with integrated solid-state sources, which evidences the very low level of noise in our integrated single-photon sources.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"218 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ae0a7a\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ae0a7a","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing the quantum interference between single photons and local oscillator with photon correlations
The quantum interference between a coherent state and a single photon is an important tool in continuous variable optical quantum technologies to characterize and engineer non-Gaussian quantum states. Semiconductor quantum dots (QDs), which have recently emerged as a key platform for efficient single-photon generation, could become interesting assets in this context. An essential parameter for interfering single photons and classical fields is the mean wavepacket overlap between both fields. Here, we report on two homodyne photon-correlation techniques enabling the precise measurement of the overlap between a single photon generated by a QD-cavity device and pulsed laser light. The different statistics of interfering fields lead to specific signatures of the quantum interference on the photon correlations at the output of the interfering beam splitter. We compare the behavior of maximized overlap, measuring either the Hong–Ou–Mandel visibility between both outputs or the photon bunching at a single output. Through careful tailoring of the laser light in various degrees of freedom, we achieve a record overlap of with integrated solid-state sources, which evidences the very low level of noise in our integrated single-photon sources.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.