Protein & Cell最新文献

筛选
英文 中文
Skin organoid transplantation promotes tissue repair with scarless in frostbite. 皮肤类器官移植可促进冻伤组织的无疤痕修复。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-04-18 DOI: 10.1093/procel/pwae055
Wenwen Wang, Pu Liu, Wendi Zhu, Tianwei Li, Ying Wang, Yujie Wang, Jun Li, Jie Ma, Ling Leng
{"title":"Skin organoid transplantation promotes tissue repair with scarless in frostbite.","authors":"Wenwen Wang, Pu Liu, Wendi Zhu, Tianwei Li, Ying Wang, Yujie Wang, Jun Li, Jie Ma, Ling Leng","doi":"10.1093/procel/pwae055","DOIUrl":"10.1093/procel/pwae055","url":null,"abstract":"<p><p>Frostbite is the most common cold injury and is caused by both immediate cold-induced cell death and the gradual development of localized inflammation and tissue ischemia. Delayed healing of frostbite often leads to scar formation, which not only causes psychological distress but also tends to result in the development of secondary malignant tumors. Therefore, a rapid healing method for frostbite wounds is urgently needed. Herein, we used a mouse skin model of frostbite injury to evaluate the recovery process after frostbite. Moreover, single-cell transcriptomics was used to determine the patterns of changes in monocytes, macrophages, epidermal cells, and fibroblasts during frostbite. Most importantly, human-induced pluripotent stem cell (hiPSC)-derived skin organoids combined with gelatin-hydrogel were constructed for the treatment of frostbite. The results showed that skin organoid treatment significantly accelerated wound healing by reducing early inflammation after frostbite and increasing the proportions of epidermal stem cells. Moreover, in the later stage of wound healing, skin organoids reduced the overall proportions of fibroblasts, significantly reduced fibroblast-to-myofibroblast transition by regulating the integrin α5β1-FAK pathway, and remodeled the extracellular matrix (ECM) through degradation and reassembly mechanisms, facilitating the restoration of physiological ECM and reducing the abundance of ECM associated with abnormal scar formation. These results highlight the potential application of organoids for promoting the reversal of frostbite-related injury and the recovery of skin functions. This study provides a new therapeutic alternative for patients suffering from disfigurement and skin dysfunction caused by frostbite.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"240-259"},"PeriodicalIF":13.6,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secreted proteins in treating metabolic-dysfunction associated steatotic liver disease: from bench towards bedside. 分泌蛋白治疗代谢功能障碍相关的脂肪变性肝病:从实验室到床边。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2025-04-17 DOI: 10.1093/procel/pwaf027
Yeping Huang,Bin Liu,Cheng Hu,Yan Lu
{"title":"Secreted proteins in treating metabolic-dysfunction associated steatotic liver disease: from bench towards bedside.","authors":"Yeping Huang,Bin Liu,Cheng Hu,Yan Lu","doi":"10.1093/procel/pwaf027","DOIUrl":"https://doi.org/10.1093/procel/pwaf027","url":null,"abstract":"Metabolic dysfunction-associated steatotic liver disease (MASLD) has become a global epidemic, yet effective pharmacological treatments remain limited. Secreted proteins play diverse roles in regulating glucose and lipid metabolism, and their dysregulation is implicated in the development of various metabolic diseases, including MASLD. Therefore, targeting secreted proteins and modulating associated signaling pathways represents a promising therapeutic strategy for MASLD. In this review, we summarize recent findings on the roles of emerging families of secreted proteins in MASLD and related metabolic disorders. These include the orosomucoid (ORM) family, secreted acidic cysteine rich glycoprotein (SPARC) family, neuregulin (Nrg) family, growth differentiation factor (GDF) family, interleukin (IL) family, fibroblast growth factor (FGF) family, bone morphogenic protein (BMP) family, as well as isthmin-1 (Ism1) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The review highlights their impact on glucose and lipid metabolism and discusses the clinical potential of targeting these secreted proteins as a therapeutic approach for MASLD.","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":"34 1","pages":""},"PeriodicalIF":21.1,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143846284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The p15 protein is a promising immunogen for developing protective immunity against African swine fever virus. p15 蛋白是一种很有前景的免疫原,可用于开发针对非洲猪瘟病毒的保护性免疫。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2025-04-15 DOI: 10.1093/procel/pwaf026
Qi Yu,Wangjun Fu,Zhenjiang Zhang,Dening Liang,Lulu Wang,Yuanmao Zhu,Encheng Sun,Fang Li,Zhigao Bu,Yutao Chen,Xiangxi Wang,Dongming Zhao
{"title":"The p15 protein is a promising immunogen for developing protective immunity against African swine fever virus.","authors":"Qi Yu,Wangjun Fu,Zhenjiang Zhang,Dening Liang,Lulu Wang,Yuanmao Zhu,Encheng Sun,Fang Li,Zhigao Bu,Yutao Chen,Xiangxi Wang,Dongming Zhao","doi":"10.1093/procel/pwaf026","DOIUrl":"https://doi.org/10.1093/procel/pwaf026","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":"1 1","pages":""},"PeriodicalIF":21.1,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143836592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamin 1-mediated endocytic recycling of glycosylated N-cadherin sustains the plastic mesenchymal state to promote ovarian cancer metastasis. 动力蛋白1介导的糖基化n -钙粘蛋白的内吞循环维持可塑间质状态,促进卵巢癌转移。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-04-10 DOI: 10.1093/procel/pwaf019
Yuee Cai, Zhangyan Guan, Yin Tong, Weiyang Zhao, Jiangwen Zhang, Ling Peng, Philip P C Ip, Sally K Y To, Alice S T Wong
{"title":"Dynamin 1-mediated endocytic recycling of glycosylated N-cadherin sustains the plastic mesenchymal state to promote ovarian cancer metastasis.","authors":"Yuee Cai, Zhangyan Guan, Yin Tong, Weiyang Zhao, Jiangwen Zhang, Ling Peng, Philip P C Ip, Sally K Y To, Alice S T Wong","doi":"10.1093/procel/pwaf019","DOIUrl":"https://doi.org/10.1093/procel/pwaf019","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144042157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Chemical screen identifies a geroprotective role of quercetin in premature aging. 更正:化学筛选确定了槲皮素在早衰中的老年保护作用。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-03-29 DOI: 10.1093/procel/pwaf023
{"title":"Correction to: Chemical screen identifies a geroprotective role of quercetin in premature aging.","authors":"","doi":"10.1093/procel/pwaf023","DOIUrl":"https://doi.org/10.1093/procel/pwaf023","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143743470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
African spiny mice show resistance to DMBA/TPA-induced squamous carcinogenesis with distinct benign tumor profile. 非洲棘鼠对DMBA/ tpa诱导的鳞状癌具有明显的良性肿瘤特征。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-03-22 DOI: 10.1093/procel/pwaf024
Fathima Athar, Francesco Morandini, Iqra Fatima, Isabella Silvestri, Seijoong Brian Kim, Minseon Lee, Xiaoyan Liao, Andrei Sharov, Vladimir Botchkarev, Andrei Seluanov, Vera Gorbunova
{"title":"African spiny mice show resistance to DMBA/TPA-induced squamous carcinogenesis with distinct benign tumor profile.","authors":"Fathima Athar, Francesco Morandini, Iqra Fatima, Isabella Silvestri, Seijoong Brian Kim, Minseon Lee, Xiaoyan Liao, Andrei Sharov, Vladimir Botchkarev, Andrei Seluanov, Vera Gorbunova","doi":"10.1093/procel/pwaf024","DOIUrl":"https://doi.org/10.1093/procel/pwaf024","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-nucleus Transcriptomics Decodes the Link Between Aging and Lumbar Disc Herniation. 单核转录组学破解衰老与腰椎间盘突出症之间的联系
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-03-22 DOI: 10.1093/procel/pwaf025
Min Wang, Zan He, Anqi Wang, Shuhui Sun, Jiaming Li, Feifei Liu, Chunde Li, Chengxian Yang, Jinghui Lei, Yan Yu, Shuai Ma, Si Wang, Weiqi Zhang, Zhengrong Yu, Guang-Hui Liu, Jing Qu
{"title":"Single-nucleus Transcriptomics Decodes the Link Between Aging and Lumbar Disc Herniation.","authors":"Min Wang, Zan He, Anqi Wang, Shuhui Sun, Jiaming Li, Feifei Liu, Chunde Li, Chengxian Yang, Jinghui Lei, Yan Yu, Shuai Ma, Si Wang, Weiqi Zhang, Zhengrong Yu, Guang-Hui Liu, Jing Qu","doi":"10.1093/procel/pwaf025","DOIUrl":"https://doi.org/10.1093/procel/pwaf025","url":null,"abstract":"<p><p>Lumbar disc (LD) herniation and aging are prevalent conditions that can result in substantial morbidity. This study aimed to clarify the mechanisms connecting the LD aging and herniation, particularly focusing on cellular senescence and molecular alterations in the nucleus pulposus (NP). We performed a detailed analysis of NP samples from a diverse cohort, including individuals of varying ages and those with diagnosed LD herniation. Our methodology combined histological assessments with single-nucleus RNA sequencing to identify phenotypic and molecular changes related to NP aging and herniation. We discovered that cellular senescence and a decrease in nucleus pulposus progenitor cells (NPPCs) are central to both processes. Additionally, we found an age-related increase in NFAT1 expression that promotes NPPC senescence and contributes to both aging and herniation of LD. This research offers fresh insights into LD aging and its associated pathologies, potentially guiding the development of new therapeutic strategies to target the root causes of LD herniation and aging.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene print-based cell subtypes annotation of human disease across heterogeneous datasets with gPRINT. 利用gPRINT跨异构数据集对人类疾病进行基于基因打印的细胞亚型注释。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-03-14 DOI: 10.1093/procel/pwaf001
Ruojin Yan, Chunmei Fan, Shen Gu, Tingzhang Wang, Zi Yin, Xiao Chen
{"title":"Gene print-based cell subtypes annotation of human disease across heterogeneous datasets with gPRINT.","authors":"Ruojin Yan, Chunmei Fan, Shen Gu, Tingzhang Wang, Zi Yin, Xiao Chen","doi":"10.1093/procel/pwaf001","DOIUrl":"https://doi.org/10.1093/procel/pwaf001","url":null,"abstract":"<p><p>Identification of disease-specific cell subtypes (DSCSs) has profound implications for understanding disease mechanisms, preoperative diagnosis, and precision therapy. However, achieving unified annotation of DSCSs in heterogeneous single-cell datasets remains a challenge. In this study, we developed the gPRINT algorithm (generalized approach for cell subtype Identification with single cell's voicePRINT). Inspired by the principles of speech recognition in noisy environments, gPRINT transforms gene position and gene expression information into voiceprints based on ordered and clustered gene expression phenomena, obtaining unique \"gene print\" patterns for each cell. Then, we integrated neural networks to mitigate the impact of background noise on cell identity label mapping. We demonstrated the reproducibility of gPRINT across different donors, single-cell sequencing platforms, and disease subtypes, and its utility for automatic cell subtype annotation across datasets. Moreover, gPRINT achieved higher annotation accuracy of 98.37% when externally validated based on the same tissue, surpassing other algorithms. Furthermore, this approach has been applied to fibrosis-associated diseases in multiple tissues throughout the body, as well as to the annotation of fibroblast subtypes in a single tissue, tendon, where fibrosis is prevalent. We successfully achieved automatic prediction of tendinopathy-specific cell subtypes, key targets, and related drugs. In summary, gPRINT provides an automated and unified approach for identifying DSCSs across datasets, facilitating the elucidation of specific cell subtypes under different disease states and providing a powerful tool for exploring therapeutic targets in diseases.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host-phage activity associations in human gut microbiome. 高通量单微生物 RNA 测序揭示了人类肠道微生物组的适应状态异质性和宿主-噬菌体活动关联。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-03-08 DOI: 10.1093/procel/pwae027
Yifei Shen, Qinghong Qian, Liguo Ding, Wenxin Qu, Tianyu Zhang, Mengdi Song, Yingjuan Huang, Mengting Wang, Ziye Xu, Jiaye Chen, Ling Dong, Hongyu Chen, Enhui Shen, Shufa Zheng, Yu Chen, Jiong Liu, Longjiang Fan, Yongcheng Wang
{"title":"High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host-phage activity associations in human gut microbiome.","authors":"Yifei Shen, Qinghong Qian, Liguo Ding, Wenxin Qu, Tianyu Zhang, Mengdi Song, Yingjuan Huang, Mengting Wang, Ziye Xu, Jiaye Chen, Ling Dong, Hongyu Chen, Enhui Shen, Shufa Zheng, Yu Chen, Jiong Liu, Longjiang Fan, Yongcheng Wang","doi":"10.1093/procel/pwae027","DOIUrl":"10.1093/procel/pwae027","url":null,"abstract":"<p><p>Microbial communities such as those residing in the human gut are highly diverse and complex, and many with important implications for health and diseases. The effects and functions of these microbial communities are determined not only by their species compositions and diversities but also by the dynamic intra- and inter-cellular states at the transcriptional level. Powerful and scalable technologies capable of acquiring single-microbe-resolution RNA sequencing information in order to achieve a comprehensive understanding of complex microbial communities together with their hosts are therefore utterly needed. Here we report the development and utilization of a droplet-based smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in human samples, which we name smRandom-seq2. Together with a triple-module computational pipeline designed for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four human gut samples, we established a single-cell level bacterial transcriptional landscape of human gut microbiome, which included 29,742 single microbes and 329 unique species. Distinct adaptive response states among species in Prevotella and Roseburia genera and intrinsic adaptive strategy heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, we identified hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. Our results indicated that smRandom-seq2 is a high-throughput and high-resolution smRNA-seq technique that is highly adaptable to complex microbial communities in real-world situations and promises new perspectives in the understanding of human microbiomes.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"211-226"},"PeriodicalIF":13.6,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel loop-structure-based bispecific CAR that targets CD19 and CD22 with enhanced therapeutic efficacy against B-cell malignancies. 基于环路结构的新型双特异性 CAR,靶向 CD19 和 CD22,提高了对 B 细胞恶性肿瘤的疗效。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-03-08 DOI: 10.1093/procel/pwae034
Lijun Zhao, Shuhong Li, Xiaoyi Wei, Xuexiu Qi, Qiaoru Guo, Licai Shi, Ji-Shuai Zhang, Jun Li, Ze-Lin Liu, Zhi Guo, Hongyu Zhang, Jia Feng, Yuanyuan Shi, Suping Zhang, Yu J Cao
{"title":"A novel loop-structure-based bispecific CAR that targets CD19 and CD22 with enhanced therapeutic efficacy against B-cell malignancies.","authors":"Lijun Zhao, Shuhong Li, Xiaoyi Wei, Xuexiu Qi, Qiaoru Guo, Licai Shi, Ji-Shuai Zhang, Jun Li, Ze-Lin Liu, Zhi Guo, Hongyu Zhang, Jia Feng, Yuanyuan Shi, Suping Zhang, Yu J Cao","doi":"10.1093/procel/pwae034","DOIUrl":"10.1093/procel/pwae034","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"227-231"},"PeriodicalIF":13.6,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信