Yuting Yang, Wenxin Zhang, Kun Wei, Fei Hu, Song Wu, Yuan Ma, Qing Ouyang
{"title":"Physiological and Pathological Roles of NTSR2 in Several Organs and Diseases (Review).","authors":"Yuting Yang, Wenxin Zhang, Kun Wei, Fei Hu, Song Wu, Yuan Ma, Qing Ouyang","doi":"10.2174/0109298665267989231024064200","DOIUrl":"10.2174/0109298665267989231024064200","url":null,"abstract":"<p><p>Neurotensin (NTS) and its receptors (NTSRs) have long been the subject of study and have shown to have a vital function in a variety of systems. They are specifically implicated in the development of tumors and have both oncogenic and anti-apoptotic effects. Neurotensin receptor 2 (NTSR2), like NTSR1, belongs to the G protein-coupled receptor family and has been linked to analgesia, mental disorders, and hematological cancers. However, several research reports have revealed that it exists in numerous different systems. As a result, it seems to be an extremely promising therapeutic target for a variety of diseases. As NTSR2 is particularly prevalent in the brain and has different distribution and developmental characteristics from NTSR1, it may play a specific role in the nervous system. The present review summarizes the expression and function of NTSR2 in different systems, to highlight its potential as a diagnostic tool or therapeutic target.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"3-10"},"PeriodicalIF":1.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92156256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oyku Irem Balli, Sule Irem Caglayan, Vladimir N Uverksy, Orkid Coskuner-Weber
{"title":"Structural Properties of Rat Intestinal Fatty Acid-Binding Protein with its Dynamics: Insights into Intrinsic Disorder.","authors":"Oyku Irem Balli, Sule Irem Caglayan, Vladimir N Uverksy, Orkid Coskuner-Weber","doi":"10.2174/0109298665313811240530055004","DOIUrl":"10.2174/0109298665313811240530055004","url":null,"abstract":"<p><strong>Background: </strong>The rat intestinal fatty acid-binding protein (I-FABP) is expressed in the small intestine and is involved in the absorption and transport of dietary fatty acids. It is used as a marker for intestinal injury and is associated with various gastrointestinal disorders. I-FABP has been studied extensively using conventional experimental and computational techniques. However, the detection of intrinsically disordered regions requires the application of special sampling molecular dynamics simulations along with certain bioinformatics because conventional computational and experimental studies face challenges in identifying the features of intrinsic disorder.</p><p><strong>Methods: </strong>Replica exchange molecular dynamics simulations were conducted along with bioinformatics studies to gain deeper insights into the structural properties of I-FABP. Specifically, the C<i>α</i> and H<i>α</i> chemical shift values werecalculated, and the findings were compared to the experiments. Furthermore, secondary and tertiary structure properties were also calculated, and the protein was clustered using k-means clustering. The end-to-end distance and radius of gyration values were reported for the protein in an aqueous solution medium. In addition, its disorder tendency was studied using various bioinformatics tools.</p><p><strong>Results and conclusion: </strong>It was reported that I-FABP is a flexible protein with regions that demonstrate intrinsic disorder characteristics. This flexibility and intrinsic disorder characteristics of IFABP may be related to its nature in ligand binding processes.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"458-468"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Galectin-3 and Severity of Liver Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease.","authors":"Mohammadjavad Sotoudeheian","doi":"10.2174/0109298665301698240404061300","DOIUrl":"10.2174/0109298665301698240404061300","url":null,"abstract":"<p><p>Metabolic dysfunction-associated Fatty Liver Disease (MAFLD) is a chronic liver disease characterized by the accumulation of fat in the liver and hepatic steatosis, which can progress to critical conditions, including Metabolic dysfunction-associated Steatohepatitis (MASH), liver fibrosis, hepatic cirrhosis, and hepatocellular carcinoma. Galectin-3, a member of the galectin family of proteins, has been involved in cascades that are responsible for the pathogenesis and progression of liver fibrosis in MAFLD. This review summarizes the present understanding of the role of galectin-3 in the severity of MAFLD and its associated liver fibrosis. The article assesses the underlying role of galectin-3-mediated fibrogenesis, including the triggering of hepatic stellate cells, the regulation of extracellular degradation, and the modulation of immune reactions and responses. It also highlights the assessments of the potential diagnostic and therapeutic implications of galectin-3 in liver fibrosis during MAFLD. Overall, this review provides insights into the multifaceted interaction between galectin-3 and liver fibrosis in MAFLD, which could lead to the development of novel strategies for diagnosis and treatment of this prevalent liver disease.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"290-304"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Yang, Hongxun Gong, Shiyan Chen, Jianzhong Li, Ning Huang, Maoxin Wang
{"title":"Depletion of SLC7A11 Sensitizes Nasopharyngeal Carcinoma Cells to Ionizing Radiation.","authors":"Fan Yang, Hongxun Gong, Shiyan Chen, Jianzhong Li, Ning Huang, Maoxin Wang","doi":"10.2174/0109298665308572240513113105","DOIUrl":"10.2174/0109298665308572240513113105","url":null,"abstract":"<p><strong>Background: </strong>Radiotherapy is the primary treatment choice for Nasopharyngeal Carcinoma (NPC). However, its efficacy is compromised due to radioresistance. Ferroptosis, a novel iron-dependent regulated cell death induced by Ionizing Radiation (IR), plays a role in promoting cancer cell death. Yet, the relationship between enhanced ferroptosis and increased sensitivity of NPC cells to IR remains poorly understood.</p><p><strong>Objective: </strong>This study aimed to explore the association between IR and ferroptosis in NPC, as well as the role of the ferroptosis repressor SLC7A11 in IR-treated NPC cells.</p><p><strong>Methods: </strong>CNE1 and HNE-2 NPC cells were subjected to IR treatment. We performed qPCR and western blotting to evaluate the expression of ferroptosis-related genes in both control and IR-treated NPC cells. Additionally, we used the MTT assay to measure the viability of these NPC cells. JC-1 and DCFH-DA staining were employed to assess mitochondrial membrane potential and Reactive Oxygen Species (ROS) levels in both control and IR-treated NPC cells. Furthermore, we examined the levels of Fe<sup>2+</sup>, Malondialdehyde (MDA), reduced Glutathione (GSH), and oxidized glutathione (GSSG) in these cells. Moreover, we depleted SLC7A11 in IR-treated NPC cells to investigate its impact on the ferroptosis of these cells.</p><p><strong>Results: </strong>IR upregulated the expression of ferroptosis-related genes, including SLC7A11, ACSL4, COX2, FTH1, and GPX4, in CNE1 and HNE-2 cells. IR treatment also resulted in decreased cell viability, disrupted mitochondrial membrane potential, increased ROS levels, altered glutathione levels, and elevated Fe<sup>2+</sup> levels. Knockdown of SLC7A11 enhanced the sensitivity of NPC cells to IR.</p><p><strong>Conclusion: </strong>IR may induce ferroptosis in NPC cells, and stimulating ferroptosis could potentially serve as a therapeutic strategy to enhance the efficacy of IR in treating NPC patients.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"323-331"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ferroptosis as a Therapeutic Target in Neurodegenerative Diseases: Exploring the Mechanisms and Potential of Treating Alzheimer's Disease and Parkinson's Disease.","authors":"Hui Zhong, Hanxiang Liu, Qiang Fu","doi":"10.2174/0109298665333926240927074528","DOIUrl":"10.2174/0109298665333926240927074528","url":null,"abstract":"<p><p>Amidst the rising global burden of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, there is an urgent need for novel therapeutic strategies to combat these debilitating conditions. These diseases are characterized by progressive neural dysfunction leading to cognitive impairments, for which current therapeutic strategies remain palliative at best. Recently, the discovery of ferroptosis, a novel cell death mode that is different from apoptosis and autophagy, has opened new avenues in the field of cognitive research. With in-depth research on ferroptosis, the clinical significance of iron homeostasis disorders and lipid peroxidation in the occurrence, development, and treatment of neurodegenerative diseases are gradually becoming apparent. This study aims to elucidate the roles of ferroptosis in the context of neurodegeneration and to explore its potential as a therapeutic target. By unraveling the intricate relationship between iron homeostasis disorders, oxidative damage, and lipid metabolism disturbances in these diseases, new intervention targets are revealed. It offers a new dimension to the management of neurocognitive impairments in Alzheimer's and Parkinson's diseases. The implications of these findings extend beyond just Alzheimer's and Parkinson's diseases. They also have relevance with other neurological conditions characterized by oxidative stress and iron dysregulation. This review contributes to increased knowledge of ferroptosis and provides a foundational understanding that could lead to the development of innovative therapeutic strategies. Ultimately, it may alleviate the development of neurodegenerative diseases and improve cognitive function by preventing ferroptosis, which has not only academic significance but also potential clinical significance.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"759-772"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on Cloning and Expression of TNF-α Variants in <i>E. coli</i>: Production, Purification, and Interaction with Anti-TNF-α Inhibitors.","authors":"Gülşah Akçadağ, Demet Cansaran-Duman, Emine Sümer Aras, Haluk Ataoğlu","doi":"10.2174/0109298665312592240516111404","DOIUrl":"10.2174/0109298665312592240516111404","url":null,"abstract":"<p><strong>Background: </strong>TNF-α is a proinflammatory cytokine and plays a role in cell proliferation, differentiation, survival, and death pathways. When administered at high doses, it may cause damage to the tumor vasculature, thereby increasing the permeability of the blood vessels. Therefore, monitoring the dose and the response of the TNF-α molecule is essential for patients' health.</p><p><strong>Objectives: </strong>This study aimed to clone, express, and purify the active form of the TNF-α protein, which can interact with various anti-TNF-α inhibitors with high efficiency.</p><p><strong>Methods: </strong>Recombinant DNA technology was used to clone three different versions of codon-optimized human TNF-α sequences to <i>E. coli.</i> Colony PCR protocol was used for verification and produced proteins were analyzed through SDS-PAGE and western blot. Size exclusion chromatography was used to purify sTNF-α. ELISA techniques were used to analyze and compare binding efficiency of sTNF-α against three different standards.</p><p><strong>Results: </strong>Under native condition (25°C), interaction between sTNF-α and anti-TNF-α antibody was 3,970, compared to positive control. The interaction was 0,587, whereas it was 0,535 for TNF- α and anti-TNF-α antibodies under denaturing conditions (37°C). F7 of sTNF-α (920 μg/mL) had the same/higher binding efficiency to adalimumab, etanercept, and infliximab, compared to commercial TNF-α.</p><p><strong>Conclusion: </strong>This study was the first to analyze binding efficiency of homemade sTNF-α protein against three major TNF-α inhibitors (adalimumab, etanercept, and infliximab) in a single study. The high binding efficiency of sTNF-α with adalimumab, etanercept, and infliximab, evidenced in this study supports the feasibility of its use in therapeutic applications, contributing to more sustainable, cost-effective, and independent healthcare system.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"395-408"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Honeybee Venom: A Potential Source of Anticancer Components.","authors":"Sabrina Xin Yi Khor, Kitiphong Khongphinitbunjong, Amorn Owatworakit, Siau Hui Mah, Yin-Quan Tang","doi":"10.2174/0109298665339355241008104141","DOIUrl":"10.2174/0109298665339355241008104141","url":null,"abstract":"<p><p>Cancer is a deadly disease that has claimed millions of lives worldwide. Traditional cancer treatments, such as chemotherapy and radiation, have been used for many years but have become less favored due to drug resistance, lack of tumor selectivity, high costs, and various side effects, such as fatigue and hair loss. Many studies have reported that animal venoms, such as those from snakes, scorpions, and bees, contain bioactive peptides that can be synthesized into anti-- cancer peptides (ACPs), which offer a potential alternative to traditional cancer therapies. Apitherapy is an area of growing interest for the development of new cancer treatments using bee venom, which is a complex mixture of biologically active peptides, enzymes, bioactive amines, and nonpeptide components that have been found to have anti-cancer properties. By leveraging these bioactive peptides, researchers could develop ACPs that are more targeted towards cancer cells, reducing the risk of adverse side effects and improving patient outcomes. The use of bee venom components in targeting cancer could provide a more selective, effective, and affordable approach to cancer therapy. While further research is needed, the potential benefits of using bee venom components in cancer therapy are significant and could help improve the lives of cancer patients worldwide. This study aims to review the components of bee venom as potential cancer treatments.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"796-805"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of TGFBR3 in the Development of Lung Cancer.","authors":"Xin Deng, Nuoya Ma, Junyu He, Fei Xu, Guoying Zou","doi":"10.2174/0109298665315841240731060636","DOIUrl":"10.2174/0109298665315841240731060636","url":null,"abstract":"<p><p>The Transforming Growth Factor-β (TGF-β) mediates embryonic development, maintains cellular homeostasis, regulates immune function, and is involved in a wide range of other biological processes. TGF-β superfamily signaling pathways play an important role in cancer development and can promote or inhibit tumorigenesis. Type III TGF-β receptor (TGFBR3) is a co-receptor in the TGF-β signaling pathway, which often occurs with reduced or complete loss of expression in many cancer patients and can act as a tumor suppressor gene. The reduction or deletion of TGFBR3 is more pronounced compared to other elements in the TGF-β signaling pathway. In recent years, lung cancer is one of the major malignant tumors that endanger human health, and its prognosis is poor. Recent studies have reported that TGFBR3 expression decreases to varying degrees in different types of lung cancer, both at the tissue level and at the cellular level. The invasion, metastasis, angiogenesis, and apoptosis of lung cancer cells are closely related to the expression of TGFBR3, which strengthens the inhibitory function of TGFBR3 in the evolution of lung cancer. This article reviews the mechanism of TGFBR3 in lung cancer and the influencing factors associated with TGFBR3. Clarifying the physiological function of TGFBR3 and its molecular mechanism in lung cancer is conducive to the diagnosis and treatment of lung cancer.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"491-503"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Heat-labile Uracil-DNA Glycosylase from <i>Oncorhynchus mykiss</i> and its Application for Carry-over Contamination Control in RT-qPCR.","authors":"Qingyuan Huang, Yaqi Zhang, Wenhao Hu, Keqi Chen, Jian Zhang, Zhidan Luo, Chen Lu","doi":"10.2174/0109298665283737240122105923","DOIUrl":"10.2174/0109298665283737240122105923","url":null,"abstract":"<p><strong>Background: </strong>Heat-labile uracil-DNA glycosylase (HL-UDG) is commonly employed to eliminate carry-over contamination in DNA amplifications. However, the prevailing HL-UDG is markedly inactivated at 50°C, rendering it unsuitable for specific one-step RT-qPCR protocols utilizing reverse transcriptase at an optimal temperature of 42°C.</p><p><strong>Objective: </strong>This study aimed to explore novel HL-UDG with lower inactivation temperature and for recombinant expression.</p><p><strong>Methods: </strong>The gene encoding an HL-UDG was cloned from the cold-water fish rainbow trout <i>(Oncorhynchus mykiss)</i> and expressed in <i>Escherichia coli</i> with high yield. The thermostability of this enzyme and other enzymatic characteristics were thoroughly examined. The novel HL-UDG was then applied for controlling carry-over contamination in one-step RT-qPCR.</p><p><strong>Results: </strong>This recombinantly expressed truncated HL-UDG of rainbow trout (OmUDG) exhibited high amino acids similarity (84.1% identity) to recombinant Atlantic cod UDG (rcUDG) and was easily denatured at 40°C. The optimal pH of OmUDG was 8.0, and the optimal concentrations of both Na<sup>+ </sup> and K<sup>+</sup> were 10 mM. Since its inactivation temperature was lower than that of rcUDG, the OmUDG could be used to eliminate carry-over contamination in one-step RT-qPCR with moderate reverse transcription temperature.</p><p><strong>Conclusion: </strong>We successfully identified and recombinantly expressed a novel HL-UDG with an inactivation temperature of 40°C. It is suitable for eliminating carry-over contamination in one-step RT-qPCR.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"169-177"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of Oral Bioavailability of Protein and Peptide by Polysaccharide-based Nanoparticles.","authors":"Md Moidul Islam, Sarjana Raikwar","doi":"10.2174/0109298665292469240228064739","DOIUrl":"10.2174/0109298665292469240228064739","url":null,"abstract":"<p><p>Oral drug delivery is a prevalent and cost-effective method due to its advantages, such as increased drug absorption surface area and improved patient compliance. However, delivering proteins and peptides orally remains a challenge due to their vulnerability to degradation by digestive enzymes, stomach acids, and limited intestinal membrane permeability, resulting in poor bioavailability. The use of nanotechnology has emerged as a promising solution to enhance the bioavailability of these vital therapeutic agents. Polymeric NPs, made from natural or synthetic polymers, are commonly used. Natural polysaccharides, such as alginate, chitosan, dextran, starch, pectin, etc., have gained preference due to their biodegradability, biocompatibility, and versatility in encapsulating various drug types. Their hydrophobic-hydrophilic properties can be tailored to suit different drug molecules.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"209-228"},"PeriodicalIF":1.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140176131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}