{"title":"The modern pattern of insect herbivory predates the advent of angiosperms by 60 My.","authors":"Lifang Xiao, Liang Chen, Conrad C Labandeira, Lauren Azevedo-Schmidt, Yongjie Wang, Dong Ren","doi":"10.1073/pnas.2412036122","DOIUrl":"https://doi.org/10.1073/pnas.2412036122","url":null,"abstract":"<p><p>Modern ecosystems display complex associations of plants-insects that underwent a long evolutionary process since the appearance of mid-Paleozoic vascular plants. Although several major hypotheses explain the evolution of these plant-insect associations, the initial pattern of modern insect herbivory is poorly understood. To understand the antiquity of modern patterns of terrestrial arthropod herbivory, functional feeding group-damage type (FFG-DT) data were used to analyze a 305 My interval from Late Pennsylvanian to present, in which 134 plant assemblages were used to assess turnover (replacement of some species by other species between sites) and nestedness (difference in composition when no species are replaced between sites) in pairwise comparisons of DTs. Results of beta diversity analyses indicate that the prototype pattern for modern insect herbivory was established on gymnosperm-dominated plant assemblages by late Middle Jurassic, antedating angiosperm dominance by 60 My. Turnover among plant groups and FFGs declined in earlier late Paleozoic, whereas during the later Cenozoic, nestedness generally increased. Insect feeding on gymnosperms showed one pattern of change with low turnover and high nestedness, whereas a bimodal pattern characterized angiosperms. Ferns and angiosperms exhibited less DT functional breadth (host-plant \"specificity\" by herbivores) than gymnosperms, reflecting major differences in links between insect herbivores and their host plants. This fundamental trophic shift is consistent with the Mid-Mesozoic Parasitoid Revolution, implying top-down control of herbivores by their consumers rather than bottom-up regulation of food sources that shaped the modern herbivory pattern. These findings provide a data-rich account of the ecological origins of modern herbivory.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 9","pages":"e2412036122"},"PeriodicalIF":9.4,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction for Schmidt et al., Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2.","authors":"","doi":"10.1073/pnas.2501339122","DOIUrl":"https://doi.org/10.1073/pnas.2501339122","url":null,"abstract":"","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 9","pages":"e2501339122"},"PeriodicalIF":9.4,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143417070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to Supporting Information for Melo et al., Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing.","authors":"","doi":"10.1073/pnas.2501333122","DOIUrl":"https://doi.org/10.1073/pnas.2501333122","url":null,"abstract":"","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 9","pages":"e2501333122"},"PeriodicalIF":9.4,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143417080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction for Jenewein et al., Concomitant formation of protocells and prebiotic compounds under a plausible early Earth atmosphere.","authors":"","doi":"10.1073/pnas.2500712122","DOIUrl":"https://doi.org/10.1073/pnas.2500712122","url":null,"abstract":"","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 9","pages":"e2500712122"},"PeriodicalIF":9.4,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143371085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hala K Haddad, Jonathan I Mercado-Reyes, E Román Mustafá, Shane P D'Souza, C Sean Chung, Ramses R M Nestor, Lauren E Olinski, Valentina Martinez Damonte, Joshua Saskin, Shruti Vemaraju, Jesica Raingo, Julie A Kauer, Richard A Lang, Elena Oancea
{"title":"Hypothalamic opsin 3 suppresses MC4R signaling and potentiates Kir7.1 to promote food consumption.","authors":"Hala K Haddad, Jonathan I Mercado-Reyes, E Román Mustafá, Shane P D'Souza, C Sean Chung, Ramses R M Nestor, Lauren E Olinski, Valentina Martinez Damonte, Joshua Saskin, Shruti Vemaraju, Jesica Raingo, Julie A Kauer, Richard A Lang, Elena Oancea","doi":"10.1073/pnas.2403891122","DOIUrl":"https://doi.org/10.1073/pnas.2403891122","url":null,"abstract":"<p><p>Mammalian opsin 3 (OPN3) is a member of the opsin family of G-protein-coupled receptors with ambiguous light sensitivity. OPN3 was first identified in the brain (and named encephalopsin) and subsequently found to be expressed in other tissues. In adipocytes, OPN3 is necessary for light responses that modulate lipolysis and glucose uptake, while OPN3 in human skin melanocytes regulates pigmentation in a light-independent manner. Despite its initial discovery in the brain, OPN3 functional mechanisms in the brain remain elusive. Here, we investigated the molecular mechanism of OPN3 function in the paraventricular nucleus (PVN) of the hypothalamus. We show that <i>Opn3</i> is coexpressed with the melanocortin 4 receptor (<i>Mc4r</i>) in a population of PVN neurons, where it negatively regulates MC4R-mediated cAMP signaling in a specific and Gα<sub>i/o</sub>-dependent manner. Under baseline conditions, OPN3 via Gα<sub>i/o</sub> potentiates the activity of the inward rectifying Kir7.1 channel, previously shown to be closed in response to agonist-mediated activation of MC4R in a Gα<sub>s</sub>-independent manner. In mice, we found that <i>Opn3</i> in <i>Mc4r</i>-expressing neurons regulates food consumption. Our results reveal the first mechanistic insight into OPN3 function in the hypothalamus, uncovering a unique mechanism by which OPN3 functions to potentiate Kir7.1 activity and negatively regulate MC4R-mediated cAMP signaling, thereby promoting food intake.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2403891122"},"PeriodicalIF":9.4,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143417062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oluwafemi F Adu, Hyunwook Lee, Simon P Früh, Marta V Schoenle, Wendy S Weichert, Andrew I Flyak, Susan L Hafenstein, Colin R Parrish
{"title":"Structures and functions of the limited natural polyclonal antibody response to parvovirus infection.","authors":"Oluwafemi F Adu, Hyunwook Lee, Simon P Früh, Marta V Schoenle, Wendy S Weichert, Andrew I Flyak, Susan L Hafenstein, Colin R Parrish","doi":"10.1073/pnas.2423460122","DOIUrl":"https://doi.org/10.1073/pnas.2423460122","url":null,"abstract":"<p><p>Host antibody responses are key components in the protection of animals against pathogens, yet the defining properties of viral antigens and induction of B cell responses that result in varied protection are still poorly understood. Parvoviruses are simple molecular structures that display 60 repeated motifs on their capsid surface, and rapidly induce strong antibody responses that protect animals from infection. We recently showed that following canine parvovirus infection of its natural host, the polyclonal response in the sera contained only two or three dominant antibodies that bound two epitopes on the capsid. Here, we characterize key antibodies present in that immune response, identifying their sequences, defining their binding properties on the capsid by cryoelectron microscopic (cryoEM) analysis, and testing their effects on viral infectivity. Two antibodies sharing the same heavy chain bound to the side of the capsid threefold spike (B-site), while another distinct antibody bound close to the threefold axis (A-site). The epitopes of these antibodies overlapped the binding site of the host receptor, the transferrin receptor type-1, but to varying degrees. The antibodies varied widely in their neutralization efficiencies as either immunoglobulins (IgGs) or monomeric antigen-binding fragments (Fabs), which was consistent with their ability to compete for the receptor. The monoclonal antibodies characterized here matched the structures from the cryoEM analysis of polyclonal sera, including those present in a different dog than the monoclonal source. This shows that after infection, a focused response to the viral antigen is produced that protects against infection.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2423460122"},"PeriodicalIF":9.4,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143417064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Options for student loan repayment matter.","authors":"Katharine G Abraham","doi":"10.1073/pnas.2500540122","DOIUrl":"10.1073/pnas.2500540122","url":null,"abstract":"","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2500540122"},"PeriodicalIF":9.4,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felix Holzmeister, Magnus Johannesson, Robert Böhm, Anna Dreber, Jürgen Huber, Michael Kirchler
{"title":"Reply to Krefeld-Schwalb et al.: Measuring population heterogeneity requires upholding good scientific practice.","authors":"Felix Holzmeister, Magnus Johannesson, Robert Böhm, Anna Dreber, Jürgen Huber, Michael Kirchler","doi":"10.1073/pnas.2426330122","DOIUrl":"10.1073/pnas.2426330122","url":null,"abstract":"","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2426330122"},"PeriodicalIF":9.4,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward equitable major histocompatibility complex binding predictions.","authors":"Eric Glynn, Dario Ghersi, Mona Singh","doi":"10.1073/pnas.2405106122","DOIUrl":"10.1073/pnas.2405106122","url":null,"abstract":"<p><p>Deep learning tools that predict peptide binding by major histocompatibility complex (MHC) proteins play an essential role in developing personalized cancer immunotherapies and vaccines. In order to ensure equitable health outcomes from their application, MHC binding prediction methods must work well across the vast landscape of MHC alleles observed across human populations. Here, we show that there are alarming disparities across individuals in different racial and ethnic groups in how much binding data are associated with their MHC alleles. We introduce a machine learning framework to assess the impact of this data imbalance for predicting binding for any given MHC allele, and apply it to develop a state-of-the-art MHC binding prediction model that additionally provides per-allele performance estimates. We demonstrate that our MHC binding model successfully mitigates much of the data disparities observed across racial groups. To address remaining inequities, we devise an algorithmic strategy for targeted data collection. Our work lays the foundation for further development of equitable MHC binding models for use in personalized immunotherapies.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2405106122"},"PeriodicalIF":9.4,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yeonsu Jung, Thomas Plumb-Reyes, Hao-Yu Greg Lin, L Mahadevan
{"title":"Entanglement transition in random rod packings.","authors":"Yeonsu Jung, Thomas Plumb-Reyes, Hao-Yu Greg Lin, L Mahadevan","doi":"10.1073/pnas.2401868122","DOIUrl":"https://doi.org/10.1073/pnas.2401868122","url":null,"abstract":"<p><p>Random packings of stiff rods are self-supporting mechanical structures stabilized by long-range interactions induced by contacts. To understand the geometrical and topological complexity of the packings, we first deploy X-ray computerized tomography to unveil the structure of the packing. This allows us to directly visualize the spatial variations in density, orientational order, and the entanglement, a mesoscopic field that we define in terms of a local average crossing number, a measure of the topological complexity of the packing. We find that increasing the aspect ratio of the constituent rods in a packing leads to a proliferation of regions of strong entanglement that eventually percolate through the system and correlated with a sharp transition in the mechanical stability of the packing. To corroborate our experimental findings, we use numerical simulations of contacting elastic rods and characterize their stability to static and dynamic loadings. Our experiments and computations lead us to an entanglement phase diagram which we also populate using published experimental data from pneumatically tangled filaments, worm blobs, and bird nests along with additional numerical simulations using these datasets. Together, these show the regimes associated with mechanically stable entanglement as a function of the statistics of the packings and loading, with lessons for a range of systems from reconfigurable architectures and textiles to active morphable filamentous assemblies.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 8","pages":"e2401868122"},"PeriodicalIF":9.4,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}