{"title":"The Brownian transport map","authors":"Dan Mikulincer, Yair Shenfeld","doi":"10.1007/s00440-024-01286-0","DOIUrl":"https://doi.org/10.1007/s00440-024-01286-0","url":null,"abstract":"<p>Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors.\u0000</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"68 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhomogeneous long-range percolation in the weak decay regime","authors":"Christian Mönch","doi":"10.1007/s00440-024-01281-5","DOIUrl":"https://doi.org/10.1007/s00440-024-01281-5","url":null,"abstract":"<p>We study a general class of percolation models in Euclidean space including long-range percolation, scale-free percolation, the weight-dependent random connection model and several other previously investigated models. Our focus is on the <i>weak decay regime</i>, in which inter-cluster long-range connection probabilities fall off polynomially with small exponent, and for which we establish several structural properties. Chief among them are the continuity of the bond percolation function and the transience of infinite clusters.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"131 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sébastien Gouëzel, Jérôme Rousseau, Manuel Stadlbauer
{"title":"Minimal distance between random orbits","authors":"Sébastien Gouëzel, Jérôme Rousseau, Manuel Stadlbauer","doi":"10.1007/s00440-024-01283-3","DOIUrl":"https://doi.org/10.1007/s00440-024-01283-3","url":null,"abstract":"<p>We study the minimal distance between two orbit segments of length <i>n</i>, in a random dynamical system with sufficiently good mixing properties. This problem has already been solved in non-random dynamical system, and on average in random dynamical systems (the so-called annealed version of the problem): it is known that the asymptotic behavior for this question is given by a dimension-like quantity associated to the invariant measure, called correlation dimension (or Rényi entropy). We study the analogous quenched question, and show that the asymptotic behavior is more involved: two correlation dimensions show up, giving rise to a non-smooth behavior of the associated asymptotic exponent.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"8 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Infinite disorder renormalization fixed point for the continuum random field Ising chain","authors":"Orphée Collin, Giambattista Giacomin, Yueyun Hu","doi":"10.1007/s00440-024-01284-2","DOIUrl":"https://doi.org/10.1007/s00440-024-01284-2","url":null,"abstract":"<p>We consider the continuum version of the random field Ising model in one dimension: this model arises naturally as weak disorder scaling limit of the original Ising model. Like for the Ising model, a spin configuration is conveniently described as a sequence of spin domains with alternating signs (<i>domain-wall structure</i>). We show that for fixed centered external field and as spin-spin couplings become large, the domain-wall structure scales to a disorder dependent limit that coincides with the <i>infinite disorder fixed point</i> process introduced by D. S. Fisher in the context of zero temperature quantum Ising chains. In particular, our results establish a number of predictions that one can find in Fisher et al. (Phys Rev E 64:41, 2001). The infinite disorder fixed point process for centered external field is equivalently described in terms of the process of <i>suitably selected</i> extrema of a Brownian trajectory introduced and studied by Neveu and Pitman (in: Séminaire de probabilités XXIII. Lecture notes in mathematics, vol 1372, pp 239–247, 1989). This characterization of the infinite disorder fixed point is one of the important ingredients of our analysis.\u0000</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"44 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140838222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Average-case analysis of the Gaussian elimination with partial pivoting","authors":"Han Huang, Konstantin Tikhomirov","doi":"10.1007/s00440-024-01276-2","DOIUrl":"https://doi.org/10.1007/s00440-024-01276-2","url":null,"abstract":"<p>The Gaussian elimination with partial pivoting (GEPP) is a classical algorithm for solving systems of linear equations. Although in specific cases the loss of precision in GEPP due to roundoff errors can be very significant, empirical evidence strongly suggests that for a <i>typical</i> square coefficient matrix, GEPP is numerically stable. We obtain a (partial) theoretical justification of this phenomenon by showing that, given the random <span>(ntimes n)</span> standard Gaussian coefficient matrix <i>A</i>, the <i>growth factor</i> of the Gaussian elimination with partial pivoting is at most polynomially large in <i>n</i> with probability close to one. This implies that with probability close to one the number of bits of precision sufficient to solve <span>(Ax = b)</span> to <i>m</i> bits of accuracy using GEPP is <span>(m+O(log n))</span>, which improves an earlier estimate <span>(m+O(log ^2 n))</span> of Sankar, and which we conjecture to be optimal by the order of magnitude. We further provide tail estimates of the growth factor which can be used to support the empirical observation that GEPP is more stable than the Gaussian Elimination with no pivoting.\u0000</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"82 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
March Boedihardjo, Thomas Strohmer, Roman Vershynin
{"title":"Private measures, random walks, and synthetic data","authors":"March Boedihardjo, Thomas Strohmer, Roman Vershynin","doi":"10.1007/s00440-024-01279-z","DOIUrl":"https://doi.org/10.1007/s00440-024-01279-z","url":null,"abstract":"<p>Differential privacy is a mathematical concept that provides an information-theoretic security guarantee. While differential privacy has emerged as a de facto standard for guaranteeing privacy in data sharing, the known mechanisms to achieve it come with some serious limitations. Utility guarantees are usually provided only for a fixed, a priori specified set of queries. Moreover, there are no utility guarantees for more complex—but very common—machine learning tasks such as clustering or classification. In this paper we overcome some of these limitations. Working with metric privacy, a powerful generalization of differential privacy, we develop a polynomial-time algorithm that creates a <i>private measure</i> from a data set. This private measure allows us to efficiently construct private synthetic data that are accurate for a wide range of statistical analysis tools. Moreover, we prove an asymptotically sharp min-max result for private measures and synthetic data in general compact metric spaces, for any fixed privacy budget <span>(varepsilon )</span> bounded away from zero. A key ingredient in our construction is a new <i>superregular random walk</i>, whose joint distribution of steps is as regular as that of independent random variables, yet which deviates from the origin logarithmically slowly.\u0000</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"11 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dirichlet forms on unconstrained Sierpinski carpets","authors":"Shiping Cao, Hua Qiu","doi":"10.1007/s00440-024-01280-6","DOIUrl":"https://doi.org/10.1007/s00440-024-01280-6","url":null,"abstract":"<p>We construct symmetric self-similar Dirichlet forms on unconstrained Sierpinski carpets, which are natural extension of planar Sierpinski carpets by allowing the small cells to live off the 1/<i>k</i> grids. The intersection of two cells can be a line segment of irrational length, and the non-diagonal assumption is dropped in this recurrent setting.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"41 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear Fokker–Planck equations with fractional Laplacian and McKean–Vlasov SDEs with Lévy noise","authors":"Viorel Barbu, Michael Röckner","doi":"10.1007/s00440-024-01277-1","DOIUrl":"https://doi.org/10.1007/s00440-024-01277-1","url":null,"abstract":"<p>This work is concerned with the existence of mild solutions to nonlinear Fokker–Planck equations with fractional Laplace operator <span>((- Delta )^s)</span> for <span>(sin left( frac{1}{2},1right) )</span>. The uniqueness of Schwartz distributional solutions is also proved under suitable assumptions on diffusion and drift terms. As applications, weak existence and uniqueness of solutions to McKean–Vlasov equations with Lévy noise, as well as the Markov property for their laws are proved.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"12 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The structure of the local time of Markov processes indexed by Lévy trees","authors":"Armand Riera, Alejandro Rosales-Ortiz","doi":"10.1007/s00440-023-01258-w","DOIUrl":"https://doi.org/10.1007/s00440-023-01258-w","url":null,"abstract":"<p>We construct an additive functional playing the role of the local time—at a fixed point <i>x</i>—for Markov processes indexed by Lévy trees. We start by proving that Markov processes indexed by Lévy trees satisfy a special Markov property which can be thought as a spatial version of the classical Markov property. Then, we construct our additive functional by an approximation procedure and we characterize the support of its Lebesgue-Stieltjes measure. We also give an equivalent construction in terms of a special family of exit local times. Finally, combining these results, we show that the points at which the Markov process takes the value <i>x</i> encode a new Lévy tree and we construct explicitly its height process. In particular, we recover a recent result of Le Gall concerning the subordinate tree of the Brownian tree where the subordination function is given by the past maximum process of Brownian motion indexed by the Brownian tree.\u0000</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"45 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Ray–Knight theorem for $$nabla phi $$ interface models and scaling limits","authors":"Jean-Dominique Deuschel, Pierre-François Rodriguez","doi":"10.1007/s00440-024-01275-3","DOIUrl":"https://doi.org/10.1007/s00440-024-01275-3","url":null,"abstract":"<p>We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this measure to the square of the corresponding gradient field, which—generically—is <i>not</i> Gaussian. In the quadratic case, we recover a well-known generalization of the second Ray–Knight theorem. We further determine the scaling limits of the various objects involved in dimension 3, which are seen to exhibit homogenization. In particular, we prove that the renormalized square of the gradient field converges under appropriate rescaling to the Wick-ordered square of a Gaussian free field on <span>(mathbb R^3)</span> with suitable diffusion matrix, thus extending a celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself.\u0000</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"51 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}