布朗运动图

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Dan Mikulincer, Yair Shenfeld
{"title":"布朗运动图","authors":"Dan Mikulincer, Yair Shenfeld","doi":"10.1007/s00440-024-01286-0","DOIUrl":null,"url":null,"abstract":"<p>Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors.\n</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"68 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Brownian transport map\",\"authors\":\"Dan Mikulincer, Yair Shenfeld\",\"doi\":\"10.1007/s00440-024-01286-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors.\\n</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-024-01286-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01286-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

概率度量之间的传输映射的收缩特性在函数不等式理论中发挥着重要作用。然而,实际构建这种映射并非易事,迄今为止主要依赖于最优传输理论。在这项工作中,我们利用高斯度量的无穷维性质,基于福尔摩过程构建了一种新的传输映射,它将维纳度量推进到欧几里得空间上的概率度量上。利用维纳空间中的马利亚文和随机微积分工具,我们证明了这种布朗传输图在各种环境中都是收缩的,而在这些环境中,最优传输图的类似问题是开放的。布朗输运图的收缩特性使我们能够证明欧几里得空间中的函数不等式,这些不等式要么是全新的,要么是对现有结果的改进。我们的收缩结果的进一步相关应用是具有理想特性的斯坦因核的存在(这导致了新的中心极限定理),以及对 Kannan-Lovász-Simonovits 猜想的新见解。我们超越了欧几里得设定,解决了维纳空间本身的收缩问题。我们证明,维纳度量与维纳空间上其他目标度量之间的最优传输映射和因果最优传输映射(与布朗传输映射有关)表现出截然不同的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Brownian transport map

Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信