Sébastien Gouëzel, Jérôme Rousseau, Manuel Stadlbauer
{"title":"随机轨道之间的最小距离","authors":"Sébastien Gouëzel, Jérôme Rousseau, Manuel Stadlbauer","doi":"10.1007/s00440-024-01283-3","DOIUrl":null,"url":null,"abstract":"<p>We study the minimal distance between two orbit segments of length <i>n</i>, in a random dynamical system with sufficiently good mixing properties. This problem has already been solved in non-random dynamical system, and on average in random dynamical systems (the so-called annealed version of the problem): it is known that the asymptotic behavior for this question is given by a dimension-like quantity associated to the invariant measure, called correlation dimension (or Rényi entropy). We study the analogous quenched question, and show that the asymptotic behavior is more involved: two correlation dimensions show up, giving rise to a non-smooth behavior of the associated asymptotic exponent.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal distance between random orbits\",\"authors\":\"Sébastien Gouëzel, Jérôme Rousseau, Manuel Stadlbauer\",\"doi\":\"10.1007/s00440-024-01283-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the minimal distance between two orbit segments of length <i>n</i>, in a random dynamical system with sufficiently good mixing properties. This problem has already been solved in non-random dynamical system, and on average in random dynamical systems (the so-called annealed version of the problem): it is known that the asymptotic behavior for this question is given by a dimension-like quantity associated to the invariant measure, called correlation dimension (or Rényi entropy). We study the analogous quenched question, and show that the asymptotic behavior is more involved: two correlation dimensions show up, giving rise to a non-smooth behavior of the associated asymptotic exponent.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-024-01283-3\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01283-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的是在具有足够好的混合特性的随机动力系统中,长度为 n 的两个轨道段之间的最小距离。这个问题已经在非随机动力学系统和随机动力学系统的平均值中得到了解决(即所谓的退火版问题):众所周知,这个问题的渐近行为是由一个与不变度量相关联的类似维度的量给出的,这个量被称为相关维度(或雷尼熵)。我们研究了类似的淬火问题,结果表明渐近行为更复杂:出现了两个相关维度,导致相关渐近指数的非平滑行为。
We study the minimal distance between two orbit segments of length n, in a random dynamical system with sufficiently good mixing properties. This problem has already been solved in non-random dynamical system, and on average in random dynamical systems (the so-called annealed version of the problem): it is known that the asymptotic behavior for this question is given by a dimension-like quantity associated to the invariant measure, called correlation dimension (or Rényi entropy). We study the analogous quenched question, and show that the asymptotic behavior is more involved: two correlation dimensions show up, giving rise to a non-smooth behavior of the associated asymptotic exponent.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.