无约束 Sierpinski 地毯上的 Dirichlet 形式

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Shiping Cao, Hua Qiu
{"title":"无约束 Sierpinski 地毯上的 Dirichlet 形式","authors":"Shiping Cao, Hua Qiu","doi":"10.1007/s00440-024-01280-6","DOIUrl":null,"url":null,"abstract":"<p>We construct symmetric self-similar Dirichlet forms on unconstrained Sierpinski carpets, which are natural extension of planar Sierpinski carpets by allowing the small cells to live off the 1/<i>k</i> grids. The intersection of two cells can be a line segment of irrational length, and the non-diagonal assumption is dropped in this recurrent setting.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirichlet forms on unconstrained Sierpinski carpets\",\"authors\":\"Shiping Cao, Hua Qiu\",\"doi\":\"10.1007/s00440-024-01280-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct symmetric self-similar Dirichlet forms on unconstrained Sierpinski carpets, which are natural extension of planar Sierpinski carpets by allowing the small cells to live off the 1/<i>k</i> grids. The intersection of two cells can be a line segment of irrational length, and the non-diagonal assumption is dropped in this recurrent setting.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-024-01280-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01280-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们在无约束 Sierpinski 地毯上构建了对称自相似 Dirichlet 形式,通过允许小单元离开 1/k 网格而自然扩展了平面 Sierpinski 地毯。两个单元格的交点可以是一条长度为无理数的线段,而非对角线的假设在这种循环设置中被取消了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dirichlet forms on unconstrained Sierpinski carpets

Dirichlet forms on unconstrained Sierpinski carpets

We construct symmetric self-similar Dirichlet forms on unconstrained Sierpinski carpets, which are natural extension of planar Sierpinski carpets by allowing the small cells to live off the 1/k grids. The intersection of two cells can be a line segment of irrational length, and the non-diagonal assumption is dropped in this recurrent setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信