{"title":"Scheduling Human Intelligence Tasks in Multi-Tenant Crowd-Powered Systems","authors":"D. Difallah, Gianluca Demartini, P. Cudré-Mauroux","doi":"10.1145/2872427.2883030","DOIUrl":"https://doi.org/10.1145/2872427.2883030","url":null,"abstract":"Micro-task crowdsourcing has become a popular approach to effectively tackle complex data management problems such as data linkage, missing values, or schema matching. However, the backend crowdsourced operators of crowd-powered systems typically yield higher latencies than the machine-processable operators, this is mainly due to inherent efficiency differences between humans and machines. This problem can be further exacerbated by the lack of workers on the target crowdsourcing platform, or when the workers are shared unequally among a number of competing requesters; including the concurrent users from the same organization who execute crowdsourced queries with different types, priorities and prices. Under such conditions, a crowd-powered system acts mostly as a proxy to the crowdsourcing platform, and hence it is very difficult to provide effiency guarantees to its end-users. Scheduling is the traditional way of tackling such problems in computer science, by prioritizing access to shared resources. In this paper, we propose a new crowdsourcing system architecture that leverages scheduling algorithms to optimize task execution in a shared resources environment, in this case a crowdsourcing platform. Our study aims at assessing the efficiency of the crowd in settings where multiple types of tasks are run concurrently. We present extensive experimental results comparing i) different multi-tenant crowdsourcing jobs, including a workload derived from real traces, and ii) different scheduling techniques tested with real crowd workers. Our experimental results show that task scheduling can be leveraged to achieve fairness and reduce query latency in multi-tenant crowd-powered systems, although with very different tradeoffs compared to traditional settings not including human factors.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87595280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Yin, Mary L. Gray, Siddharth Suri, Jennifer Wortman Vaughan
{"title":"The Communication Network Within the Crowd","authors":"Ming Yin, Mary L. Gray, Siddharth Suri, Jennifer Wortman Vaughan","doi":"10.1145/2872427.2883036","DOIUrl":"https://doi.org/10.1145/2872427.2883036","url":null,"abstract":"Since its inception, crowdsourcing has been considered a black-box approach to solicit labor from a crowd of workers. Furthermore, the \"crowd\" has been viewed as a group of independent workers dispersed all over the world. Recent studies based on in-person interviews have opened up the black box and shown that the crowd is not a collection of independent workers, but instead that workers communicate and collaborate with each other. Put another way, prior work has shown the existence of edges between workers. We build on and extend this discovery by mapping the entire communication network of workers on Amazon Mechanical Turk, a leading crowdsourcing platform. We execute a task in which over 10,000 workers from across the globe self-report their communication links to other workers, thereby mapping the communication network among workers. Our results suggest that while a large percentage of workers indeed appear to be independent, there is a rich network topology over the rest of the population. That is, there is a substantial communication network within the crowd. We further examine how online forum usage relates to network topology, how workers communicate with each other via this network, how workers' experience levels relate to their network positions, and how U.S. workers differ from international workers in their network characteristics. We conclude by discussing the implications of our findings for requesters, workers, and platform providers like Amazon.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88499674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dhanya R. Krishnan, D. Quoc, Pramod Bhatotia, C. Fetzer, R. Rodrigues
{"title":"IncApprox: A Data Analytics System for Incremental Approximate Computing","authors":"Dhanya R. Krishnan, D. Quoc, Pramod Bhatotia, C. Fetzer, R. Rodrigues","doi":"10.1145/2872427.2883026","DOIUrl":"https://doi.org/10.1145/2872427.2883026","url":null,"abstract":"Incremental and approximate computations are increasingly being adopted for data analytics to achieve low-latency execution and efficient utilization of computing resources. Incremental computation updates the output incrementally instead of re-computing everything from scratch for successive runs of a job with input changes. Approximate computation returns an approximate output for a job instead of the exact output. Both paradigms rely on computing over a subset of data items instead of computing over the entire dataset, but they differ in their means for skipping parts of the computation. Incremental computing relies on the memoization of intermediate results of sub-computations, and reusing these memoized results across jobs. Approximate computing relies on representative sampling of the entire dataset to compute over a subset of data items. In this paper, we observe that these two paradigms are complementary, and can be married together! Our idea is quite simple: design a sampling algorithm that biases the sample selection to the memoized data items from previous runs. To realize this idea, we designed an online stratified sampling algorithm that uses self-adjusting computation to produce an incrementally updated approximate output with bounded error. We implemented our algorithm in a data analytics system called IncApprox based on Apache Spark Streaming. Our evaluation using micro-benchmarks and real-world case-studies shows that IncApprox achieves the benefits of both incremental and approximate computing.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89833577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong-Han Shuai, Chih-Ya Shen, De-Nian Yang, Yi-Feng Lan, Wang-Chien Lee, Philip S. Yu, Ming-Syan Chen
{"title":"Mining Online Social Data for Detecting Social Network Mental Disorders","authors":"Hong-Han Shuai, Chih-Ya Shen, De-Nian Yang, Yi-Feng Lan, Wang-Chien Lee, Philip S. Yu, Ming-Syan Chen","doi":"10.1145/2872427.2882996","DOIUrl":"https://doi.org/10.1145/2872427.2882996","url":null,"abstract":"An increasing number of social network mental disorders (SNMDs), such as Cyber-Relationship Addiction, Information Overload, and Net Compulsion, have been recently noted. Symptoms of these mental disorders are usually observed passively today, resulting in delayed clinical intervention. In this paper, we argue that mining online social behavior provides an opportunity to actively identify SNMDs at an early stage. It is challenging to detect SNMDs because the mental factors considered in standard diagnostic criteria (questionnaire) cannot be observed from online social activity logs. Our approach, new and innovative to the practice of SNMD detection, does not rely on self-revealing of those mental factors via questionnaires. Instead, we propose a machine learning framework, namely, Social Network Mental Disorder Detection (SNMDD), that exploits features extracted from social network data to accurately identify potential cases of SNMDs. We also exploit multi-source learning in SNMDD and propose a new SNMDbased Tensor Model (STM) to improve the performance. Our framework is evaluated via a user study with 3126 online social network users. We conduct a feature analysis, and also apply SNMDD on large-scale datasets and analyze the characteristics of the three SNMD types. The results show that SNMDD is promising for identifying online social network users with potential SNMDs.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90478858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingbo Hu, Sihong Xie, Jiawei Zhang, Qiang Zhu, Songtao Guo, Philip S. Yu
{"title":"HeteroSales: Utilizing Heterogeneous Social Networks to Identify the Next Enterprise Customer","authors":"Qingbo Hu, Sihong Xie, Jiawei Zhang, Qiang Zhu, Songtao Guo, Philip S. Yu","doi":"10.1145/2872427.2883000","DOIUrl":"https://doi.org/10.1145/2872427.2883000","url":null,"abstract":"Nowadays, a modern e-commerce company may have both online sales and offline sales departments. Normally, online sales attempt to sell in small quantities to individual customers through broadcasting a large amount of emails or promotion codes, which heavily rely on the designed backend algorithms. Offline sales, on the other hand, try to sell in much larger quantities to enterprise customers through contacts initiated by sales representatives, which are more costly compared to online sales. Unlike many previous research works focusing on machine learning algorithms to support online sales, this paper introduces an approach that utilizes heterogenous social networks to improve the effectiveness of offline sales. More specifically, we propose a two-phase framework, HeteroSales, which first constructs a company-to-company graph, a.k.a. Company Homophily Graph (CHG), from semantics based meta-path learning, and then adopts label propagation on the graph to predict promising companies that we may successfully close an offline deal with. Based on the statistical analysis on the world's largest professional social network, LinkedIn, we demonstrate interesting discoveries showing that not all the social connections in a heterogeneous social network are useful in this task. In other words, some proper data preprocessing is essential to ensure the effectiveness of offline sales. Finally, through the experiments on LinkedIn social network data and third-party offline sales records, we demonstrate the power of HereroSales to identify potential enterprise customers in offline sales.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76183808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dot Everyone!!: Power, the Internet and You","authors":"M. Fox","doi":"10.1145/2872427.2874817","DOIUrl":"https://doi.org/10.1145/2872427.2874817","url":null,"abstract":"","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79046418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using Hierarchical Skills for Optimized Task Assignment in Knowledge-Intensive Crowdsourcing","authors":"Panagiotis Mavridis, D. Gross-Amblard, Z. Miklós","doi":"10.1145/2872427.2883070","DOIUrl":"https://doi.org/10.1145/2872427.2883070","url":null,"abstract":"Besides the simple human intelligence tasks such as image labeling, crowdsourcing platforms propose more and more tasks that require very specific skills, especially in participative science projects. In this context, there is a need to reason about the required skills for a task and the set of available skills in the crowd, in order to increase the resulting quality. Most of the existing solutions rely on unstructured tags to model skills (vector of skills). In this paper we propose to finely model tasks and participants using a skill tree, that is a taxonomy of skills equipped with a similarity distance within skills. This model of skills enables to map participants to tasks in a way that exploits the natural hierarchy among the skills. We illustrate the effectiveness of our model and algorithms through extensive experimentation with synthetic and real data sets.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75514088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Collaborative Nowcasting for Contextual Recommendation","authors":"Yu Sun, Nicholas Jing Yuan, Xing Xie, Kieran McDonald, Rui Zhang","doi":"10.1145/2872427.2874812","DOIUrl":"https://doi.org/10.1145/2872427.2874812","url":null,"abstract":"Mobile digital assistants such as Microsoft Cortana and Google Now currently offer appealing proactive experiences to users, which aim to deliver the right information at the right time. To achieve this goal, it is crucial to precisely predict users' real-time intent. Intent is closely related to context, which includes not only the spatial-temporal information but also users' current activities that can be sensed by mobile devices. The relationship between intent and context is highly dynamic and exhibits chaotic sequential correlation. The context itself is often sparse and heterogeneous. The dynamics and co-movement among contextual signals are also elusive and complicated. Traditional recommendation models cannot directly apply to proactive experiences because they fail to tackle the above challenges. Inspired by the nowcasting practice in meteorology and macroeconomics, we propose an innovative collaborative nowcasting model to effectively resolve these challenges. The proposed model successfully addresses sparsity and heterogeneity of contextual signals. It also effectively models the convoluted correlation within contextual signals and between context and intent. Specifically, the model first extracts collaborative latent factors, which summarize shared temporal structural patterns in contextual signals, and then exploits the collaborative Kalman Filter to generate serially correlated personalized latent factors, which are utilized to monitor each user's real-time intent. Extensive experiments with real-world data sets from a commercial digital assistant demonstrate the effectiveness of the collaborative nowcasting model. The studied problem and model provide inspiring implications for new paradigms of recommendations on mobile intelligent devices.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83775032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disinformation on the Web: Impact, Characteristics, and Detection of Wikipedia Hoaxes","authors":"Srijan Kumar, Robert West, J. Leskovec","doi":"10.1145/2872427.2883085","DOIUrl":"https://doi.org/10.1145/2872427.2883085","url":null,"abstract":"Wikipedia is a major source of information for many people. However, false information on Wikipedia raises concerns about its credibility. One way in which false information may be presented on Wikipedia is in the form of hoax articles, i.e., articles containing fabricated facts about nonexistent entities or events. In this paper we study false information on Wikipedia by focusing on the hoax articles that have been created throughout its history. We make several contributions. First, we assess the real-world impact of hoax articles by measuring how long they survive before being debunked, how many pageviews they receive, and how heavily they are referred to by documents on the Web. We find that, while most hoaxes are detected quickly and have little impact on Wikipedia, a small number of hoaxes survive long and are well cited across the Web. Second, we characterize the nature of successful hoaxes by comparing them to legitimate articles and to failed hoaxes that were discovered shortly after being created. We find characteristic differences in terms of article structure and content, embeddedness into the rest of Wikipedia, and features of the editor who created the hoax. Third, we successfully apply our findings to address a series of classification tasks, most notably to determine whether a given article is a hoax. And finally, we describe and evaluate a task involving humans distinguishing hoaxes from non-hoaxes. We find that humans are not particularly good at the task and that our automated classifier outperforms them by a big margin.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84563156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yeye He, K. Chakrabarti, Tao Cheng, Tomasz Tylenda
{"title":"Automatic Discovery of Attribute Synonyms Using Query Logs and Table Corpora","authors":"Yeye He, K. Chakrabarti, Tao Cheng, Tomasz Tylenda","doi":"10.1145/2872427.2874816","DOIUrl":"https://doi.org/10.1145/2872427.2874816","url":null,"abstract":"Attribute synonyms are important ingredients for keyword-based search systems. For instance, web search engines recognize queries that seek the value of an entity on a specific attribute (referred to as e+a queries) and provide direct answers for them using a combination of knowledge bases, web tables and documents. However, users often refer to an attribute in their e+a query differently from how it is referred in the web table or text passage. In such cases, search engines may fail to return relevant answers. To address that problem, we propose to automatically discover all the alternate ways of referring to the attributes of a given class of entities (referred to as attribute synonyms) in order to improve search quality. The state-of-the-art approach that relies on attribute name co-occurrence in web tables suffers from low precision. Our main insight is to combine positive evidence of attribute synonymity from query click logs, with negative evidence from web table attribute name co-occurrences. We formalize the problem as an optimization problem on a graph, with the attribute names being the vertices and the positive and negative evidences from query logs and web table schemas as weighted edges. We develop a linear programming based algorithm to solve the problem that has bi-criteria approximation guarantees. Our experiments on real-life datasets show that our approach has significantly higher precision and recall compared with the state-of-the-art.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72965123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}