运用层次技能优化知识密集型众包任务分配

Panagiotis Mavridis, D. Gross-Amblard, Z. Miklós
{"title":"运用层次技能优化知识密集型众包任务分配","authors":"Panagiotis Mavridis, D. Gross-Amblard, Z. Miklós","doi":"10.1145/2872427.2883070","DOIUrl":null,"url":null,"abstract":"Besides the simple human intelligence tasks such as image labeling, crowdsourcing platforms propose more and more tasks that require very specific skills, especially in participative science projects. In this context, there is a need to reason about the required skills for a task and the set of available skills in the crowd, in order to increase the resulting quality. Most of the existing solutions rely on unstructured tags to model skills (vector of skills). In this paper we propose to finely model tasks and participants using a skill tree, that is a taxonomy of skills equipped with a similarity distance within skills. This model of skills enables to map participants to tasks in a way that exploits the natural hierarchy among the skills. We illustrate the effectiveness of our model and algorithms through extensive experimentation with synthetic and real data sets.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Using Hierarchical Skills for Optimized Task Assignment in Knowledge-Intensive Crowdsourcing\",\"authors\":\"Panagiotis Mavridis, D. Gross-Amblard, Z. Miklós\",\"doi\":\"10.1145/2872427.2883070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Besides the simple human intelligence tasks such as image labeling, crowdsourcing platforms propose more and more tasks that require very specific skills, especially in participative science projects. In this context, there is a need to reason about the required skills for a task and the set of available skills in the crowd, in order to increase the resulting quality. Most of the existing solutions rely on unstructured tags to model skills (vector of skills). In this paper we propose to finely model tasks and participants using a skill tree, that is a taxonomy of skills equipped with a similarity distance within skills. This model of skills enables to map participants to tasks in a way that exploits the natural hierarchy among the skills. We illustrate the effectiveness of our model and algorithms through extensive experimentation with synthetic and real data sets.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2883070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2883070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

除了简单的人类智能任务,如图像标记,众包平台提出了越来越多的任务,需要非常具体的技能,特别是在参与科学项目。在这种情况下,需要对任务所需的技能和人群中可用的技能集进行推理,以提高结果质量。大多数现有的解决方案依赖于非结构化标签来建模技能(技能向量)。在本文中,我们提出使用技能树对任务和参与者进行精细建模,这是一种技能分类,在技能中配备了相似距离。这个技能模型能够以一种利用技能之间的自然层次结构的方式将参与者映射到任务。我们通过对合成数据集和真实数据集的大量实验来说明我们的模型和算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Hierarchical Skills for Optimized Task Assignment in Knowledge-Intensive Crowdsourcing
Besides the simple human intelligence tasks such as image labeling, crowdsourcing platforms propose more and more tasks that require very specific skills, especially in participative science projects. In this context, there is a need to reason about the required skills for a task and the set of available skills in the crowd, in order to increase the resulting quality. Most of the existing solutions rely on unstructured tags to model skills (vector of skills). In this paper we propose to finely model tasks and participants using a skill tree, that is a taxonomy of skills equipped with a similarity distance within skills. This model of skills enables to map participants to tasks in a way that exploits the natural hierarchy among the skills. We illustrate the effectiveness of our model and algorithms through extensive experimentation with synthetic and real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信