使用整体终身主题模型挖掘特定方面的意见

Shuai Wang, Zhiyuan Chen, Bing Liu
{"title":"使用整体终身主题模型挖掘特定方面的意见","authors":"Shuai Wang, Zhiyuan Chen, Bing Liu","doi":"10.1145/2872427.2883086","DOIUrl":null,"url":null,"abstract":"Aspect-level sentiment analysis or opinion mining consists of several core sub-tasks: aspect extraction, opinion identification, polarity classification, and separation of general and aspect-specific opinions. Various topic models have been proposed by researchers to address some of these sub-tasks. However, there is little work on modeling all of them together. In this paper, we first propose a holistic fine-grained topic model, called the JAST (Joint Aspect-based Sentiment Topic) model, that can simultaneously model all of above problems under a unified framework. To further improve it, we incorporate the idea of lifelong machine learning and propose a more advanced model, called the LAST (Lifelong Aspect-based Sentiment Topic) model. LAST automatically mines the prior knowledge of aspect, opinion, and their correspondence from other products or domains. Such knowledge is automatically extracted and incorporated into the proposed LAST model without any human involvement. Our experiments using reviews of a large number of product domains show major improvements of the proposed models over state-of-the-art baselines.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"128","resultStr":"{\"title\":\"Mining Aspect-Specific Opinion using a Holistic Lifelong Topic Model\",\"authors\":\"Shuai Wang, Zhiyuan Chen, Bing Liu\",\"doi\":\"10.1145/2872427.2883086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspect-level sentiment analysis or opinion mining consists of several core sub-tasks: aspect extraction, opinion identification, polarity classification, and separation of general and aspect-specific opinions. Various topic models have been proposed by researchers to address some of these sub-tasks. However, there is little work on modeling all of them together. In this paper, we first propose a holistic fine-grained topic model, called the JAST (Joint Aspect-based Sentiment Topic) model, that can simultaneously model all of above problems under a unified framework. To further improve it, we incorporate the idea of lifelong machine learning and propose a more advanced model, called the LAST (Lifelong Aspect-based Sentiment Topic) model. LAST automatically mines the prior knowledge of aspect, opinion, and their correspondence from other products or domains. Such knowledge is automatically extracted and incorporated into the proposed LAST model without any human involvement. Our experiments using reviews of a large number of product domains show major improvements of the proposed models over state-of-the-art baselines.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"128\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2883086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2883086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 128

摘要

方面级情感分析或意见挖掘由几个核心子任务组成:方面提取、意见识别、极性分类以及一般意见和特定方面意见的分离。研究人员提出了各种主题模型来解决其中的一些子任务。然而,对所有这些模型进行建模的工作很少。在本文中,我们首先提出了一个整体的细粒度主题模型,称为JAST (Joint Aspect-based Sentiment topic)模型,该模型可以在一个统一的框架下同时对上述所有问题进行建模。为了进一步改进它,我们结合了终身机器学习的思想,并提出了一个更高级的模型,称为LAST(终身面向方面的情感主题)模型。LAST自动从其他产品或领域中挖掘方面、意见及其对应的先验知识。这些知识被自动提取并合并到所提出的LAST模型中,而无需任何人工参与。我们的实验使用了大量产品领域的回顾,显示了在最先进的基线上提出的模型的主要改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Aspect-Specific Opinion using a Holistic Lifelong Topic Model
Aspect-level sentiment analysis or opinion mining consists of several core sub-tasks: aspect extraction, opinion identification, polarity classification, and separation of general and aspect-specific opinions. Various topic models have been proposed by researchers to address some of these sub-tasks. However, there is little work on modeling all of them together. In this paper, we first propose a holistic fine-grained topic model, called the JAST (Joint Aspect-based Sentiment Topic) model, that can simultaneously model all of above problems under a unified framework. To further improve it, we incorporate the idea of lifelong machine learning and propose a more advanced model, called the LAST (Lifelong Aspect-based Sentiment Topic) model. LAST automatically mines the prior knowledge of aspect, opinion, and their correspondence from other products or domains. Such knowledge is automatically extracted and incorporated into the proposed LAST model without any human involvement. Our experiments using reviews of a large number of product domains show major improvements of the proposed models over state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信