Mining Online Social Data for Detecting Social Network Mental Disorders

Hong-Han Shuai, Chih-Ya Shen, De-Nian Yang, Yi-Feng Lan, Wang-Chien Lee, Philip S. Yu, Ming-Syan Chen
{"title":"Mining Online Social Data for Detecting Social Network Mental Disorders","authors":"Hong-Han Shuai, Chih-Ya Shen, De-Nian Yang, Yi-Feng Lan, Wang-Chien Lee, Philip S. Yu, Ming-Syan Chen","doi":"10.1145/2872427.2882996","DOIUrl":null,"url":null,"abstract":"An increasing number of social network mental disorders (SNMDs), such as Cyber-Relationship Addiction, Information Overload, and Net Compulsion, have been recently noted. Symptoms of these mental disorders are usually observed passively today, resulting in delayed clinical intervention. In this paper, we argue that mining online social behavior provides an opportunity to actively identify SNMDs at an early stage. It is challenging to detect SNMDs because the mental factors considered in standard diagnostic criteria (questionnaire) cannot be observed from online social activity logs. Our approach, new and innovative to the practice of SNMD detection, does not rely on self-revealing of those mental factors via questionnaires. Instead, we propose a machine learning framework, namely, Social Network Mental Disorder Detection (SNMDD), that exploits features extracted from social network data to accurately identify potential cases of SNMDs. We also exploit multi-source learning in SNMDD and propose a new SNMDbased Tensor Model (STM) to improve the performance. Our framework is evaluated via a user study with 3126 online social network users. We conduct a feature analysis, and also apply SNMDD on large-scale datasets and analyze the characteristics of the three SNMD types. The results show that SNMDD is promising for identifying online social network users with potential SNMDs.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2882996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

An increasing number of social network mental disorders (SNMDs), such as Cyber-Relationship Addiction, Information Overload, and Net Compulsion, have been recently noted. Symptoms of these mental disorders are usually observed passively today, resulting in delayed clinical intervention. In this paper, we argue that mining online social behavior provides an opportunity to actively identify SNMDs at an early stage. It is challenging to detect SNMDs because the mental factors considered in standard diagnostic criteria (questionnaire) cannot be observed from online social activity logs. Our approach, new and innovative to the practice of SNMD detection, does not rely on self-revealing of those mental factors via questionnaires. Instead, we propose a machine learning framework, namely, Social Network Mental Disorder Detection (SNMDD), that exploits features extracted from social network data to accurately identify potential cases of SNMDs. We also exploit multi-source learning in SNMDD and propose a new SNMDbased Tensor Model (STM) to improve the performance. Our framework is evaluated via a user study with 3126 online social network users. We conduct a feature analysis, and also apply SNMDD on large-scale datasets and analyze the characteristics of the three SNMD types. The results show that SNMDD is promising for identifying online social network users with potential SNMDs.
挖掘在线社交数据检测社交网络精神障碍
近年来,越来越多的社会网络精神障碍(SNMDs),如网络关系成瘾、信息超载和网络强迫,已被注意到。目前,这些精神障碍的症状通常是被动观察到的,导致临床干预延迟。在本文中,我们认为挖掘在线社会行为提供了一个在早期阶段积极识别snmd的机会。检测snmd具有挑战性,因为标准诊断标准(问卷)中考虑的心理因素无法从在线社会活动日志中观察到。我们的方法是新的和创新的SNMD检测实践,不依赖于通过问卷调查自我揭示这些心理因素。相反,我们提出了一个机器学习框架,即社交网络精神障碍检测(SNMDD),它利用从社交网络数据中提取的特征来准确识别潜在的snmd病例。我们还利用SNMDD中的多源学习,并提出了一种新的基于SNMDD的张量模型(STM)来提高性能。我们的框架是通过对3126名在线社交网络用户的用户研究来评估的。我们进行了特征分析,并将SNMDD应用于大规模数据集,分析了三种SNMD类型的特征。结果表明,SNMDD有望用于识别具有潜在snmd的在线社交网络用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信