Polymer Journal最新文献

筛选
英文 中文
Development of functional polymer gel electrolytes and their application in next-generation lithium secondary batteries 功能聚合物凝胶电解质的研制及其在下一代锂二次电池中的应用
IF 2.3 4区 化学
Polymer Journal Pub Date : 2024-10-03 DOI: 10.1038/s41428-024-00969-8
Ryota Tamate
{"title":"Development of functional polymer gel electrolytes and their application in next-generation lithium secondary batteries","authors":"Ryota Tamate","doi":"10.1038/s41428-024-00969-8","DOIUrl":"10.1038/s41428-024-00969-8","url":null,"abstract":"Owing to the digital revolution and growing emphasis on sustainability, the demand for innovative electrochemical devices, such as flexible and wearable sensors, energy-harvesting devices, and high-capacity secondary batteries, has been increasing. Alongside this, various high-performance gel electrolytes with excellent mechanical and electrochemical properties have been developed. This focus review presents our recent research on enhancing the mechanical properties of gel electrolytes and their application in lithium secondary batteries. It discusses the efforts made to achieve self-healing ion gels, which utilize ionic liquids as the electrolyte solutions. Additionally, the review covers the application of functional gel electrolytes in next-generation lithium secondary batteries. It focuses particularly on improving the cycling performance of lithium metal anodes, which are considered the very promising anode material. Moreover, the future prospects of functional polymer gel electrolytes have been discussed in this review. This focus review presents our recent research on enhancing the mechanical properties of gel electrolytes and their application in lithium secondary batteries. It discusses the efforts made to achieve self-healing ion gels, which utilize ionic liquids as the electrolyte solutions. Additionally, the review covers the application of functional gel electrolytes in next-generation lithium secondary batteries. It focuses particularly on improving the cycling performance of lithium metal anodes, which are considered the very promising anode material.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"43-55"},"PeriodicalIF":2.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00969-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistic simulations of polysaccharide materials for insights into their crystal structure, nanostructure, and dissolution mechanism 多糖材料的原子模拟,以深入了解其晶体结构,纳米结构和溶解机制
IF 2.3 4区 化学
Polymer Journal Pub Date : 2024-10-03 DOI: 10.1038/s41428-024-00966-x
Takuya Uto
{"title":"Atomistic simulations of polysaccharide materials for insights into their crystal structure, nanostructure, and dissolution mechanism","authors":"Takuya Uto","doi":"10.1038/s41428-024-00966-x","DOIUrl":"10.1038/s41428-024-00966-x","url":null,"abstract":"Crystalline polysaccharides are abundant in nature and can be transformed into highly functional materials. However, the molecular basis for the formation of higher-order structures remains unclear. Computer simulation is an advanced tool for modeling macromolecular structures, and the atomistic simulations provide valuable information on the crystalline polysaccharides. Fiber deformation, crystalline transition, and novel nanostructures of cellulose were characterized through molecular dynamics simulations and density functional theory calculations of models of molecular chain sheets extracted from the crystal structure of the cellulose polymorphs. Extended ensemble molecular dynamics simulations were applied to analyze the artificial crystal structure of non-natural amylose analog polysaccharides, revealing the hexagonal packing of double helices through the self-assembly of molecular chains dispersed in aqueous solution. Dissolution simulations of the cellulose and chitin crystalline fibers revealed that the anions of ionic liquids, with their solvation power, played a key role in the cleavage of intermolecular hydrogen bonds in the crystal structure, whereas the cations contributed to irreversible molecular chain dispersion. The good correlation between the actual solubility of polysaccharides and the predicted number of intermolecular hydrogen bonds prompted the development of a platform that combined simulations and machine learning for high-throughput screening of solvents for cellulose and chitin. Crystalline polysaccharides, which are abundant in nature, can be transformed into highly functional materials. However, the molecular basis for the formation of higher-order structures remains incompletely understood. Computer simulation is an advanced tool for modeling macromolecular structures, with atomistic simulations providing valuable information on crystalline polysaccharides. This focus review covers theoretical and computational studies, including atomistic simulations, performed by our research group on the crystallographic properties and novel nanostructures of cellulose, crystal structure of amylose analog polysaccharides, and dissolution mechanism of cellulose and chitin crystalline fibers.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"33-41"},"PeriodicalIF":2.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00966-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double-stranded vinyl polymer with transformable side chains synthesized in a metal‒organic framework 在金属有机框架中合成具有可转换侧链的双链乙烯基聚合物
IF 2.3 4区 化学
Polymer Journal Pub Date : 2024-10-03 DOI: 10.1038/s41428-024-00970-1
Yuki Kametani, Masahiro Abe, Tomohito Mori, Takashi Uemura
{"title":"Double-stranded vinyl polymer with transformable side chains synthesized in a metal‒organic framework","authors":"Yuki Kametani, Masahiro Abe, Tomohito Mori, Takashi Uemura","doi":"10.1038/s41428-024-00970-1","DOIUrl":"10.1038/s41428-024-00970-1","url":null,"abstract":"Post-polymerization modification (PPM) via active ester chemistry is a valuable method for modulating side-chain structures without altering their main-chain topology. Herein, we synthesized a double-stranded vinyl polymer with an active ester by crosslinking radical polymerization within the nanochannels of a metal‒organic framework (MOF) with a pore diameter comparable to that of the duplex. The resulting double-stranded poly(1,1,1,3,3,3-hexafluoroisopropyl acrylate) (DPHFIPA) was readily converted into acrylates and acrylamides with side chains derived from the nucleophile used in the PPM. This approach offers a pathway for creating double-stranded vinyl polymers with repeating units that are otherwise difficult to synthesize, even when MOF-templated polymerization is used. Double-stranded polymers have attracted attention due to their elegant structures and potential properties arising from their topology. In this work, we performed cross-linking polymerization of an active ester acrylate monomer within the nanochannels of a metal‒organic framework (MOF). The spatial constraints in the MOF facilitated the formation of a polymer duplex. Subsequently, transformation of the side chains could be achieved without altering the double-stranded topology, providing a variety of functional vinyl polymer duplexes.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"129-135"},"PeriodicalIF":2.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00970-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of polyfumarates containing a 4-tert-butylcyclohexyl group and unique solid-state properties based on the orientation of rigid poly(substituted methylene) chains 基于刚性聚(取代亚甲基)链取向的含4-叔丁基环己基和独特固态性质的聚富马酸酯的合成
IF 2.3 4区 化学
Polymer Journal Pub Date : 2024-09-27 DOI: 10.1038/s41428-024-00967-w
Ryotaro Ishimaru, Yasuhito Suzuki, Akikazu Matsumoto
{"title":"Synthesis of polyfumarates containing a 4-tert-butylcyclohexyl group and unique solid-state properties based on the orientation of rigid poly(substituted methylene) chains","authors":"Ryotaro Ishimaru, Yasuhito Suzuki, Akikazu Matsumoto","doi":"10.1038/s41428-024-00967-w","DOIUrl":"10.1038/s41428-024-00967-w","url":null,"abstract":"Poly(dialkyl fumarate)s (PDRFs), which are produced by the radical polymerization of dialkyl fumarates, are highly transparent amorphous polymer materials with excellent heat resistance, mechanical, and optical properties. The physical properties of PDRFs with a rigid poly(substituted methylene) structure discontinuously change at their β transition temperature (Tβ) because of restricted local molecular motion, including the rotation of substituents in the side chain. In this study, we performed a radical polymerization of symmetric and asymmetric dialkyl fumarates, including 4-tert-butylcyclohexyl esters with a fixed cycloalkyl conformation, to clarify the thermal and optical properties of the produced PDRFs. The Tβ value, refractive index, and density of the PDRFs increased with the introduction of the 4-tert-butylcyclohexyl group. Based on the wide-angle X-ray scattering (WAXS) measurement results, we analyzed the spontaneous aggregation of the PDRF chains in the solid state to discuss their density and optical properties in detail. Poly(dialkyl fumarate)s (PDRFs) with a rigid poly(substituted methylene) structure are highly transparent amorphous polymer materials with excellent heat resistance, mechanical, and optical properties. In this study, we performed a radical polymerization of symmetric and asymmetric dialkyl fumarates, including 4-tert-butylcyclohexyl esters with a fixed cycloalkyl conformation, and found that the β transition temperatures, refractive indices, and densities of the PDRFs increased with the introduction of the 4-tert-butylcyclohexyl group. The density, optical properties, and spontaneous aggregation structures of the PDRF in the solid state were discussed.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"95-107"},"PeriodicalIF":2.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00967-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of thermoplastic films via formulation design technology for millimeter-wave communication applications 通过配方设计技术开发热塑性薄膜用于毫米波通信
IF 2.3 4区 化学
Polymer Journal Pub Date : 2024-09-25 DOI: 10.1038/s41428-024-00962-1
Seigo Suzuki
{"title":"Development of thermoplastic films via formulation design technology for millimeter-wave communication applications","authors":"Seigo Suzuki","doi":"10.1038/s41428-024-00962-1","DOIUrl":"10.1038/s41428-024-00962-1","url":null,"abstract":"Advanced communication technology using millimeter waves (mmWaves) requires new polymeric materials with low dielectric properties to minimize signal transmission losses. The dielectric polarization of polymers, including electronic, vibrational, orientational, ionic, and interfacial contributions, as well as the water molecules absorbed within them, is strongly related to their dielectric properties in the mmWave region. This has led to the emergence of liquid crystal polymers (LCPs) and fluoropolymers as candidate materials for mmWave communication. However, their poor secondary processability and adhesion to copper wiring often limit their practical application. This focus review describes two types of thermoplastic films developed via formulation design technology for mmWave communication. A crystalline polyaryletherketone-based film, compounded with a plate-like, low-polarity filler and blended with miscible noncrystalline polymers to control the crystallization behavior, exhibits a low transmission loss capability comparable to that of LCPs. Additionally, this film offers solder reflow heat resistance, a low coefficient of thermal expansion (CTE), and excellent multilayer processing capabilities at low temperatures, making it suitable for use in multilayer substrates for mmWave communication applications. A polyolefin-based film demonstrates ultralow dielectric properties comparable to those of fluoropolymers and strong adhesion to copper foil. Furthermore, this film offers customizable functionalities, including laser processability, transparency, a low CTE, and flame retardancy, enabling its application in flat, flexible cables and transparent antennas. Owing to their unique characteristics, these films are promising candidates for mmWave communication materials. This focus review describes two types of thermoplastic films developed via formulation design technology for mmWave communication. The first type is a crystalline polyaryletherketone (PAEK)-based film, which is improved with plate-like fillers and miscible noncrystalline polymers. This film exhibits low dielectric properties, heat resistance, low thermal expansion, and excellent multilayer processing capabilities. The second type is a specialized polyolefin resin-based film, which achieves ultralow dielectric properties comparable to those of PTFE and combines excellent copper adhesion with customizable functionalities such as laser processability, transparency, and flame retardancy.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"69-77"},"PeriodicalIF":2.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LCST/UCST-type thermosensitive properties of carboxy-terminal PAMAM dendrimers modified with different numbers of phenylalanine residues 不同数量苯丙氨酸残基修饰的羧基端PAMAM树状大分子的LCST/ ucst型热敏性质
IF 2.3 4区 化学
Polymer Journal Pub Date : 2024-09-25 DOI: 10.1038/s41428-024-00963-0
Hiroya Shiba, Akikazu Matsumoto, Chie Kojima
{"title":"LCST/UCST-type thermosensitive properties of carboxy-terminal PAMAM dendrimers modified with different numbers of phenylalanine residues","authors":"Hiroya Shiba, Akikazu Matsumoto, Chie Kojima","doi":"10.1038/s41428-024-00963-0","DOIUrl":"10.1038/s41428-024-00963-0","url":null,"abstract":"Stimuli-sensitive polymers are useful smart materials. Dendrimers are synthetic polymers with well-defined structures, and various functional dendrimers have been produced by modifying compounds at their termini. We previously reported that polyamidoamine (PAMAM) dendrimers modified with cis-1,2-cyclohexane dicarboxylic acid (CHex) and phenylalanine (Phe), named PAMAM-CHex-Phe, exhibit upper critical solution temperature (UCST)-type thermosensitivity at acidic pH. In this study, we synthesized PAMAM dendrimers with CHex and various numbers of bound Phe residues and examined their pH and temperature sensitivities. Interestingly, PAMAM-CHex-Phe, with fewer than 32 Phe residues, showed lower critical solution temperature (LCST)-type thermosensitivity at pH 5 but not UCST-type thermosensitivity. PAMAM-CHex-Phe40 and PAMAM-CHex-Phe48 exhibited both LCST- and UCST-type thermosensitivity at pH values of 5 and 6, respectively. Fully Phe-modified PAMAM-CHex-Phe (PAMAM-CHex-Phe64) showed UCST-type but not LCST-type thermosensitivity. pH titration experiments suggested that the protonation behaviors of these dendrimers were different, likely resulting in different phase transitions. Therefore, the phase transition temperature and behavior could be regulated by varying the number of bound Phe residues in the PAMAM-CHex-Phe dendrimers and the solution pH. Polyamidoamine dendrimers modified with cis-1,2-cyclohexane dicarboxylic acid and phenylalanine, named PAMAM-CHex-Phe, with various numbers of Phe residues were synthesized as dual pH- and temperature-sensitive polymers. PAMAM-CHex-Phe, with fewer than 32 Phe residues, showed lower critical solution temperature (LCST)-type thermosensitivity at pH 5. PAMAM-CHex-Phe40 and PAMAM-CHex-Phe48 exhibited both LCST- and upper critical solution temperature (UCST)-type thermosensitivity at pH values of 5 and 6, respectively. PAMAM-CHex-Phe64 showed UCST-type thermosensitivity. Our results indicate that thermosensitivity can be regulated by changing the number of Phe residues in PAMAM-CHex-Phe and the solution pH.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"137-142"},"PeriodicalIF":2.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the cyclic structures of p-tert-butylcalix[n]arenes on a bisoxazoline curing system 对叔丁基杯[n]芳烃环结构对双恶唑啉固化体系的影响
IF 2.3 4区 化学
Polymer Journal Pub Date : 2024-09-25 DOI: 10.1038/s41428-024-00964-z
Morio Yonekawa, Hajime Kimura, Keiko Ohtsuka, Tomohiro Shimokawaji
{"title":"Effect of the cyclic structures of p-tert-butylcalix[n]arenes on a bisoxazoline curing system","authors":"Morio Yonekawa, Hajime Kimura, Keiko Ohtsuka, Tomohiro Shimokawaji","doi":"10.1038/s41428-024-00964-z","DOIUrl":"10.1038/s41428-024-00964-z","url":null,"abstract":"The thermal curing reactions of p-tert-butylcalix[n]arenes (Cn) (n = 4, 6, and 8) with 1,3-phenylenebis(2-oxazoline) (PBO) were performed. The obtained thermosets were characterized to determine the relationships between the ring size of the calixarenes and the properties of their network polymers. The samples were cured by heating at 160 °C and 180 °C for 1 h each and then at 200 °C, 230 °C, and 250 °C for 2 h each without a solvent and catalyst. For comparison, a corresponding linear four-nucleus novolac (L4) was cured with PBO under the same conditions. Dynamic mechanical analyses of the thermosets revealed that the glass transition temperature (Tg) increased in the following order: L4/PBO < C4/PBO < C8/PBO < C6/PBO. Model reactions with a monofunctional oxazoline compound indicated that the final crosslinking degree of the network polymers increased with increasing ring size. Conversely, the cyclic structures became increasingly rigid as the ring size decreased. Because of its moderate reactivity and rigidity, the network polymer derived from C6 exhibited the highest Tg. Thermal curing reactions of p-tert-butylcalix[n]arenes (Cn: n = 4, 6, and 8) with 1,3-phenylenebis(2-oxazoline) (PBO) were conducted, and the obtained thermosets were characterized. The dynamic mechanical analyses of the thermosets revealed that the glass transition temperature (Tg) increased in the following order: C4/PBO < C8/PBO < C6/PBO. Meanwhile, model reactions indicated that the crosslinking degree increased as the ring size of the calixarene increased. The highest Tg of the C6/PBO thermoset was due to the moderate reactivity and rigidity of the cyclic structure of C6.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"87-94"},"PeriodicalIF":2.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of heat treatment time on the PTC behavior of wollastonite/CB/CPE composites 热处理时间对硅灰石/CB/CPE 复合材料 PTC 行为的影响
IF 2.3 4区 化学
Polymer Journal Pub Date : 2024-09-19 DOI: 10.1038/s41428-024-00956-z
Jiaxin Zhao, Hongliang Hu, Dawei Jiang, Yujie Jin, Chun Li, Feng Luo
{"title":"Effect of heat treatment time on the PTC behavior of wollastonite/CB/CPE composites","authors":"Jiaxin Zhao, Hongliang Hu, Dawei Jiang, Yujie Jin, Chun Li, Feng Luo","doi":"10.1038/s41428-024-00956-z","DOIUrl":"10.1038/s41428-024-00956-z","url":null,"abstract":"Wollastonite (W)/carbon black (CB)/chlorinated polyethylene (CPE) conductive composites were prepared via melt compounding using CB and wollastonite as fillers and CPE as the matrix. To analyze the internal structure of the material and examine how changes in crystallinity affect the positive temperature coefficient (PTC) behavior of the composites, several characterization techniques were employed. These methods included scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. Each method provided insights into the structural adjustments and their implications for the electrical properties of the material. Special attention was given to the influence of the wollastonite content on the electrical conductivity of the composites. The results demonstrated that the lowest room-temperature resistivity (1.66 Ω·cm) was achieved with 15 wt.% wollastonite doping after 1 h of heat treatment. At the same time, the PTC strength increased to 4.7. Wollastonite (W)/carbon black (CB)/chlorinated polyethylene (CPE) conductive composites were prepared via melt compounding using CB and wollastonite as fillers and CPE as the matrix. The results indicated that the room temperature resistivity of CPE/CB/wollastonite composites decreased to 1.66Ω·cm after 1 hour of heat treatment, and the PTC strength reached 4.7. Subsequently, the relationship between the internal structure of the materials, changes in crystallinity, and PTC properties was analyzed using X-ray diffractometry and DSC differential scanning calorimetry.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"109-117"},"PeriodicalIF":2.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acid-activatable photosensitizers for photodynamic therapy using self-aggregates of chlorophyll‒peptide conjugates 利用叶绿素-肽共轭物的自聚集体开发可酸激活的光敏剂,用于光动力疗法
IF 2.3 4区 化学
Polymer Journal Pub Date : 2024-09-19 DOI: 10.1038/s41428-024-00961-2
Miyu Nagatani, Masaru Yoshikawa, Shinya Tsukiji, Masahiro Higuchi, Hitoshi Tamiaki, Shogo Matsubara
{"title":"Acid-activatable photosensitizers for photodynamic therapy using self-aggregates of chlorophyll‒peptide conjugates","authors":"Miyu Nagatani, Masaru Yoshikawa, Shinya Tsukiji, Masahiro Higuchi, Hitoshi Tamiaki, Shogo Matsubara","doi":"10.1038/s41428-024-00961-2","DOIUrl":"10.1038/s41428-024-00961-2","url":null,"abstract":"Photodynamic therapy is useful due to its high antitumor efficacy, spatiotemporal selectivity, and noninvasiveness and has garnered significant attention in the field of cancer treatment. When photoexcited by light irradiation, photosensitizers produce reactive oxygen species (ROS) that damage tumor tissues. However, photosensitizers can also accumulate in normal tissues, leading to side effects such as skin photosensitivity. To mitigate these side effects, we report the development of chlorophyll‒peptide conjugates as tumor-selective photosensitizers. These conjugates bearing histidine and lysine residues self-assemble into nanoparticles that are expected to accumulate selectively in tumors and reduce ROS generation through self-quenching under the neutral conditions typical of normal tissues. In contrast, these aggregated conjugates partially disassemble under weakly acidic conditions, such as those found in tumor tissues, resulting in phototoxicity. We anticipate that these acid-activatable conjugates have the potential to serve as cancer-selective photosensitizers, thereby reducing phototoxicity in normal tissues. Photodynamic therapy using photosensitizers as therapeutic agents has various advantages such as high antitumor efficacy, spatiotemporal selectivity, and noninvasiveness. However, photosensitizers also accumulate in normal tissues as well as tumor tissues, causing side effects. Here, we report chlorophyll‒peptide conjugates as novel photosensitizers to decrease the side effect. The assembled conjugates are expected to exhibit tumor-selective accumulation and tumor-selective activation of phototoxicity.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"119-128"},"PeriodicalIF":2.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00961-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural analysis of polymers via solid-state dynamic nuclear polarization (DNP)-NMR 通过固态动态核偏振(DNP)-核磁共振分析聚合物结构
IF 2.3 4区 化学
Polymer Journal Pub Date : 2024-09-11 DOI: 10.1038/s41428-024-00965-y
Shinji Tanaka
{"title":"Structural analysis of polymers via solid-state dynamic nuclear polarization (DNP)-NMR","authors":"Shinji Tanaka","doi":"10.1038/s41428-024-00965-y","DOIUrl":"10.1038/s41428-024-00965-y","url":null,"abstract":"Solid-state NMR is one of the most powerful analytical methods for the structural characterization and dynamics of polymers. Owing to its intrinsically low signal sensitivity, however, analysis of trace chemical species supported on polymers remains challenging. Solid-state NMR with dynamic nuclear polarization (DNP-NMR) has recently attracted attention as a highly sensitive NMR measurement method for analyzing polymers. We recently investigated DNP-NMR for insoluble polymers, particularly cross-linked polymers, engineering plastics, and polymer-supported catalysts, and achieved high NMR signal sensitivity at a routinely accessible level. In this focus review, we present case studies on DNP-NMR measurements for a wide range of polymers. Solid-state NMR with dynamic nuclear polarization (DNP-NMR) has recently attracted attention as a highly sensitive NMR measurement method for analyzing polymers. We recently investigated DNP-NMR for insoluble polymers, particularly cross-linked polymers, engineering plastics, and polymer-supported catalysts, and achieved high NMR signal sensitivity at a routinely accessible level. In this focus review, we present case studies on DNP-NMR measurements for a wide range of polymers.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"25-32"},"PeriodicalIF":2.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信