PLoS Computational Biology最新文献

筛选
英文 中文
Information dynamics of in silico EEG Brain Waves: Insights into oscillations and functions. 脑电图脑电波的信息动态:洞察振荡和功能
IF 3.8 2区 生物学
PLoS Computational Biology Pub Date : 2024-09-05 DOI: 10.1371/journal.pcbi.1012369
Gustavo Menesse, Joaquín J Torres
{"title":"Information dynamics of in silico EEG Brain Waves: Insights into oscillations and functions.","authors":"Gustavo Menesse, Joaquín J Torres","doi":"10.1371/journal.pcbi.1012369","DOIUrl":"https://doi.org/10.1371/journal.pcbi.1012369","url":null,"abstract":"<p><p>The relation between electroencephalography (EEG) rhythms, brain functions, and behavioral correlates is well-established. Some physiological mechanisms underlying rhythm generation are understood, enabling the replication of brain rhythms in silico. This offers a pathway to explore connections between neural oscillations and specific neuronal circuits, potentially yielding fundamental insights into the functional properties of brain waves. Information theory frameworks, such as Integrated information Decomposition (Φ-ID), relate dynamical regimes with informational properties, providing deeper insights into neuronal dynamic functions. Here, we investigate wave emergence in an excitatory/inhibitory (E/I) balanced network of integrate and fire neurons with short-term synaptic plasticity. This model produces a diverse range of EEG-like rhythms, from low δ waves to high-frequency oscillations. Through Φ-ID, we analyze the network's information dynamics and its relation with different emergent rhythms, elucidating the system's suitability for functions such as robust information transfer, storage, and parallel operation. Furthermore, our study helps to identify regimes that may resemble pathological states due to poor informational properties and high randomness. We found, e.g., that in silico β and δ waves are associated with maximum information transfer in inhibitory and excitatory neuron populations, respectively, and that the coexistence of excitatory θ, α, and β waves is associated to information storage. Additionally, we observed that high-frequency oscillations can exhibit either high or poor informational properties, potentially shedding light on ongoing discussions regarding physiological versus pathological high-frequency oscillations. In summary, our study demonstrates that dynamical regimes with similar oscillations may exhibit vastly different information dynamics. Characterizing information dynamics within these regimes serves as a potent tool for gaining insights into the functions of complex neuronal networks. Finally, our findings suggest that the use of information dynamics in both model and experimental data analysis, could help discriminate between oscillations associated with cognitive functions and those linked to neuronal disorders.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ten simple rules for scientific code review. 科学代码审查的十条简单规则
IF 3.8 2区 生物学
PLoS Computational Biology Pub Date : 2024-09-05 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pcbi.1012375
Ariel Rokem
{"title":"Ten simple rules for scientific code review.","authors":"Ariel Rokem","doi":"10.1371/journal.pcbi.1012375","DOIUrl":"10.1371/journal.pcbi.1012375","url":null,"abstract":"<p><p>As large, high-dimensional data have become more common, software development is playing an increasingly important role in research across many different fields. This creates a need to adopt software engineering practices in research settings. Code review is the engineering practice of giving and receiving detailed feedback on a computer program. Consistent and continuous examination of the evolution of computer programs by others has been shown to be beneficial, especially when reviewers are familiar with the technical aspects of the software and also when they possess relevant domain expertise. The rules described in the present article provide information about the why, when, and how of code review. They provide the motivation for continual code reviews as a natural part of a rigorous research program. They provide practical guidelines for conducting review of code both in person, as a \"lab meeting for code,\" as well as asynchronously, using industry-standard online tools. A set of guidelines is provided for the nitty-gritty details of code review, as well as for the etiquette of such a review. Both the technical and the social aspects of code review are covered to provide the reader with a comprehensive approach that facilitates an effective, enjoyable, and educational approach to code review.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Physics-Informed Neural Network approach for compartmental epidemiological models. 用于分区流行病学模型的物理信息神经网络方法。
IF 3.8 2区 生物学
PLoS Computational Biology Pub Date : 2024-09-05 DOI: 10.1371/journal.pcbi.1012387
Caterina Millevoi, Damiano Pasetto, Massimiliano Ferronato
{"title":"A Physics-Informed Neural Network approach for compartmental epidemiological models.","authors":"Caterina Millevoi, Damiano Pasetto, Massimiliano Ferronato","doi":"10.1371/journal.pcbi.1012387","DOIUrl":"https://doi.org/10.1371/journal.pcbi.1012387","url":null,"abstract":"<p><p>Compartmental models provide simple and efficient tools to analyze the relevant transmission processes during an outbreak, to produce short-term forecasts or transmission scenarios, and to assess the impact of vaccination campaigns. However, their calibration is not straightforward, since many factors contribute to the rapid change of the transmission dynamics. For example, there might be changes in the individual awareness, the imposition of non-pharmacological interventions and the emergence of new variants. As a consequence, model parameters such as the transmission rate are doomed to vary in time, making their assessment more challenging. Here, we propose to use Physics-Informed Neural Networks (PINNs) to track the temporal changes in the model parameters and the state variables. PINNs recently gained attention in many engineering applications thanks to their ability to consider both the information from data (typically uncertain) and the governing equations of the system. The ability of PINNs to identify unknown model parameters makes them particularly suitable to solve ill-posed inverse problems, such as those arising in the application of epidemiological models. Here, we develop a reduced-split approach for the implementation of PINNs to estimate the temporal changes in the state variables and transmission rate of an epidemic based on the SIR model equation and infectious data. The main idea is to split the training first on the epidemiological data, and then on the residual of the system equations. The proposed method is applied to five synthetic test cases and two real scenarios reproducing the first months of the Italian COVID-19 pandemic. Our results show that the split implementation of PINNs outperforms the joint approach in terms of accuracy (up to one order of magnitude) and computational times (speed up of 20%). Finally, we illustrate that the proposed PINN-method can also be adopted to produced short-term forecasts of the dynamics of an epidemic.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pyPAGE: A framework for Addressing biases in gene-set enrichment analysis-A case study on Alzheimer's disease. pyPAGE:解决基因组富集分析中的偏差的框架--关于阿尔茨海默病的案例研究。
IF 3.8 2区 生物学
PLoS Computational Biology Pub Date : 2024-09-05 DOI: 10.1371/journal.pcbi.1012346
Artemy Bakulin, Noam B Teyssier, Martin Kampmann, Matvei Khoroshkin, Hani Goodarzi
{"title":"pyPAGE: A framework for Addressing biases in gene-set enrichment analysis-A case study on Alzheimer's disease.","authors":"Artemy Bakulin, Noam B Teyssier, Martin Kampmann, Matvei Khoroshkin, Hani Goodarzi","doi":"10.1371/journal.pcbi.1012346","DOIUrl":"https://doi.org/10.1371/journal.pcbi.1012346","url":null,"abstract":"<p><p>Inferring the driving regulatory programs from comparative analysis of gene expression data is a cornerstone of systems biology. Many computational frameworks were developed to address this problem, including our iPAGE (information-theoretic Pathway Analysis of Gene Expression) toolset that uses information theory to detect non-random patterns of expression associated with given pathways or regulons. Our recent observations, however, indicate that existing approaches are susceptible to the technical biases that are inherent to most real world annotations. To address this, we have extended our information-theoretic framework to account for specific biases and artifacts in biological networks using the concept of conditional information. To showcase pyPAGE, we performed a comprehensive analysis of regulatory perturbations that underlie the molecular etiology of Alzheimer's disease (AD). pyPAGE successfully recapitulated several known AD-associated gene expression programs. We also discovered several additional regulons whose differential activity is significantly associated with AD. We further explored how these regulators relate to pathological processes in AD through cell-type specific analysis of single cell and spatial gene expression datasets. Our findings showcase the utility of pyPAGE as a precise and reliable biomarker discovery in complex diseases such as Alzheimer's disease.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MVST: Identifying spatial domains of spatial transcriptomes from multiple views using multi-view graph convolutional networks. MVST:利用多视图卷积网络从多个视图识别空间转录组的空间域。
IF 3.8 2区 生物学
PLoS Computational Biology Pub Date : 2024-09-05 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pcbi.1012409
Hao Duan, Qingchen Zhang, Feifei Cui, Quan Zou, Zilong Zhang
{"title":"MVST: Identifying spatial domains of spatial transcriptomes from multiple views using multi-view graph convolutional networks.","authors":"Hao Duan, Qingchen Zhang, Feifei Cui, Quan Zou, Zilong Zhang","doi":"10.1371/journal.pcbi.1012409","DOIUrl":"10.1371/journal.pcbi.1012409","url":null,"abstract":"<p><p>Spatial transcriptome technology can parse transcriptomic data at the spatial level to detect high-throughput gene expression and preserve information regarding the spatial structure of tissues. Identifying spatial domains, that is identifying regions with similarities in gene expression and histology, is the most basic and critical aspect of spatial transcriptome data analysis. Most current methods identify spatial domains only through a single view, which may obscure certain important information and thus fail to make full use of the information embedded in spatial transcriptome data. Therefore, we propose an unsupervised clustering framework based on multiview graph convolutional networks (MVST) to achieve accurate spatial domain recognition by the learning graph embedding features of neighborhood graphs constructed from gene expression information, spatial location information, and histopathological image information through multiview graph convolutional networks. By exploring spatial transcriptomes from multiple views, MVST enables data from all parts of the spatial transcriptome to be comprehensively and fully utilized to obtain more accurate spatial expression patterns. We verified the effectiveness of MVST on real spatial transcriptome datasets, the robustness of MVST on some simulated datasets, and the reasonableness of the framework structure of MVST in ablation experiments, and from the experimental results, it is clear that MVST can achieve a more accurate spatial domain identification compared with the current more advanced methods. In conclusion, MVST is a powerful tool for spatial transcriptome research with improved spatial domain recognition.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling inter-embryo variability in spindle length over time: Towards quantitative phenotype analysis. 揭示胚胎间纺锤体长度随时间的变化:实现定量表型分析
IF 3.8 2区 生物学
PLoS Computational Biology Pub Date : 2024-09-05 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pcbi.1012330
Yann Le Cunff, Laurent Chesneau, Sylvain Pastezeur, Xavier Pinson, Nina Soler, Danielle Fairbrass, Benjamin Mercat, Ruddi Rodriguez-Garcia, Zahraa Alayan, Ahmed Abdouni, Gary de Neidhardt, Valentin Costes, Mélodie Anjubault, Hélène Bouvrais, Christophe Héligon, Jacques Pécréaux
{"title":"Unveiling inter-embryo variability in spindle length over time: Towards quantitative phenotype analysis.","authors":"Yann Le Cunff, Laurent Chesneau, Sylvain Pastezeur, Xavier Pinson, Nina Soler, Danielle Fairbrass, Benjamin Mercat, Ruddi Rodriguez-Garcia, Zahraa Alayan, Ahmed Abdouni, Gary de Neidhardt, Valentin Costes, Mélodie Anjubault, Hélène Bouvrais, Christophe Héligon, Jacques Pécréaux","doi":"10.1371/journal.pcbi.1012330","DOIUrl":"10.1371/journal.pcbi.1012330","url":null,"abstract":"<p><p>How can inter-individual variability be quantified? Measuring many features per experiment raises the question of choosing them to recapitulate high-dimensional data. Tackling this challenge on spindle elongation phenotypes, we showed that only three typical elongation patterns describe spindle elongation in C. elegans one-cell embryo. These archetypes, automatically extracted from the experimental data using principal component analysis (PCA), accounted for more than 95% of inter-individual variability of more than 1600 experiments across more than 100 different conditions. The two first archetypes were related to spindle average length and anaphasic elongation rate. The third archetype, accounting for 6% of the variability, was novel and corresponded to a transient spindle shortening in late metaphase, reminiscent of kinetochore function-defect phenotypes. Importantly, these three archetypes were robust to the choice of the dataset and were found even considering only non-treated conditions. Thus, the inter-individual differences between genetically perturbed embryos have the same underlying nature as natural inter-individual differences between wild-type embryos, independently of the temperatures. We thus propose that beyond the apparent complexity of the spindle, only three independent mechanisms account for spindle elongation, weighted differently in the various conditions. Interestingly, the spindle-length archetypes covered both metaphase and anaphase, suggesting that spindle elongation in late metaphase is sufficient to predict the late anaphase length. We validated this idea using a machine-learning approach. Finally, given amounts of these three archetypes could represent a quantitative phenotype. To take advantage of this, we set out to predict interacting genes from a seed based on the PCA coefficients. We exemplified this firstly on the role of tpxl-1 whose homolog tpx2 is involved in spindle microtubule branching, secondly the mechanism regulating metaphase length, and thirdly the central spindle players which set the length at anaphase. We found novel interactors not in public databases but supported by recent experimental publications.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moderate confirmation bias enhances decision-making in groups of reinforcement-learning agents. 适度的确认偏差会增强强化学习代理群体的决策能力。
IF 3.8 2区 生物学
PLoS Computational Biology Pub Date : 2024-09-04 DOI: 10.1371/journal.pcbi.1012404
Clémence Bergerot, Wolfram Barfuss, Pawel Romanczuk
{"title":"Moderate confirmation bias enhances decision-making in groups of reinforcement-learning agents.","authors":"Clémence Bergerot, Wolfram Barfuss, Pawel Romanczuk","doi":"10.1371/journal.pcbi.1012404","DOIUrl":"https://doi.org/10.1371/journal.pcbi.1012404","url":null,"abstract":"<p><p>Humans tend to give more weight to information confirming their beliefs than to information that disconfirms them. Nevertheless, this apparent irrationality has been shown to improve individual decision-making under uncertainty. However, little is known about this bias' impact on decision-making in a social context. Here, we investigate the conditions under which confirmation bias is beneficial or detrimental to decision-making under social influence. To do so, we develop a Collective Asymmetric Reinforcement Learning (CARL) model in which artificial agents observe others' actions and rewards, and update this information asymmetrically. We use agent-based simulations to study how confirmation bias affects collective performance on a two-armed bandit task, and how resource scarcity, group size and bias strength modulate this effect. We find that a confirmation bias benefits group learning across a wide range of resource-scarcity conditions. Moreover, we discover that, past a critical bias strength, resource abundance favors the emergence of two different performance regimes, one of which is suboptimal. In addition, we find that this regime bifurcation comes with polarization in small groups of agents. Overall, our results suggest the existence of an optimal, moderate level of confirmation bias for decision-making in a social context.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HyperTraPS-CT: Inference and prediction for accumulation pathways with flexible data and model structures. HyperTraPS-CT:利用灵活的数据和模型结构对积累途径进行推理和预测。
IF 3.8 2区 生物学
PLoS Computational Biology Pub Date : 2024-09-04 DOI: 10.1371/journal.pcbi.1012393
Olav N L Aga, Morten Brun, Kazeem A Dauda, Ramon Diaz-Uriarte, Konstantinos Giannakis, Iain G Johnston
{"title":"HyperTraPS-CT: Inference and prediction for accumulation pathways with flexible data and model structures.","authors":"Olav N L Aga, Morten Brun, Kazeem A Dauda, Ramon Diaz-Uriarte, Konstantinos Giannakis, Iain G Johnston","doi":"10.1371/journal.pcbi.1012393","DOIUrl":"https://doi.org/10.1371/journal.pcbi.1012393","url":null,"abstract":"<p><p>Accumulation processes, where many potentially coupled features are acquired over time, occur throughout the sciences, from evolutionary biology to disease progression, and particularly in the study of cancer progression. Existing methods for learning the dynamics of such systems typically assume limited (often pairwise) relationships between feature subsets, cross-sectional or untimed observations, small feature sets, or discrete orderings of events. Here we introduce HyperTraPS-CT (Hypercubic Transition Path Sampling in Continuous Time) to compute posterior distributions on continuous-time dynamics of many, arbitrarily coupled, traits in unrestricted state spaces, accounting for uncertainty in observations and their timings. We demonstrate the capacity of HyperTraPS-CT to deal with cross-sectional, longitudinal, and phylogenetic data, which may have no, uncertain, or precisely specified sampling times. HyperTraPS-CT allows positive and negative interactions between arbitrary subsets of features (not limited to pairwise interactions), supporting Bayesian and maximum-likelihood inference approaches to identify these interactions, consequent pathways, and predictions of future and unobserved features. We also introduce a range of visualisations for the inferred outputs of these processes and demonstrate model selection and regularisation for feature interactions. We apply this approach to case studies on the accumulation of mutations in cancer progression and the acquisition of anti-microbial resistance genes in tuberculosis, demonstrating its flexibility and capacity to produce predictions aligned with applied priorities.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Springs vs. motors: Ideal assistance in the lower limbs during walking at different speeds. 弹簧与马达:以不同速度行走时对下肢的理想辅助。
IF 3.8 2区 生物学
PLoS Computational Biology Pub Date : 2024-09-04 DOI: 10.1371/journal.pcbi.1011837
Israel Luis, Maarten Afschrift, Elena M Gutierrez-Farewik
{"title":"Springs vs. motors: Ideal assistance in the lower limbs during walking at different speeds.","authors":"Israel Luis, Maarten Afschrift, Elena M Gutierrez-Farewik","doi":"10.1371/journal.pcbi.1011837","DOIUrl":"https://doi.org/10.1371/journal.pcbi.1011837","url":null,"abstract":"<p><p>Recent years have witnessed breakthroughs in assistive exoskeletons; both passive and active devices have reduced metabolic costs near preferred walking speed by assisting muscle actions. Metabolic reductions at multiple speeds should thus also be attainable. Musculoskeletal simulation can potentially predict the interaction between assistive moments, muscle-tendon mechanics, and walking energetics. In this study, we simulated devices' optimal assistive moments based on minimal muscle activations during walking with prescribed kinematics and dynamics. We used a generic musculoskeletal model with tuned muscle-tendon parameters and computed metabolic rates from muscle actions. We then simulated walking across multiple speeds and with two ideal actuation modes-motor-based and spring-based-to assist ankle plantarflexion, knee extension, hip flexion, and hip abduction and compared computed metabolic rates. We found that both actuation modes considerably reduced physiological joint moments but did not always reduce metabolic rates. Compared to unassisted conditions, motor-based ankle plantarflexion and hip flexion assistance reduced metabolic rates, and this effect was more pronounced as walking speed increased. Spring-based hip flexion and abduction assistance increased metabolic rates at some walking speeds despite a moderate decrease in some muscle activations. Both modes of knee extension assistance reduced metabolic rates to a small extent, even though the actuation contributed with practically the entire net knee extension moment during stance. Motor-based hip abduction assistance reduced metabolic rates more than spring-based assistance, though this reduction was relatively small. Our study also suggests that an assistive strategy based on minimal muscle activations might result in a suboptimal reduction of metabolic rates. Future work should experimentally validate the effects of assistive moments and refine modeling assumptions accordingly. Our computational workflow is freely available online.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian clustering with uncertain data. 不确定数据的贝叶斯聚类。
IF 3.8 2区 生物学
PLoS Computational Biology Pub Date : 2024-09-03 DOI: 10.1371/journal.pcbi.1012301
Kath Nicholls, Paul D W Kirk, Chris Wallace
{"title":"Bayesian clustering with uncertain data.","authors":"Kath Nicholls, Paul D W Kirk, Chris Wallace","doi":"10.1371/journal.pcbi.1012301","DOIUrl":"https://doi.org/10.1371/journal.pcbi.1012301","url":null,"abstract":"<p><p>Clustering is widely used in bioinformatics and many other fields, with applications from exploratory analysis to prediction. Many types of data have associated uncertainty or measurement error, but this is rarely used to inform the clustering. We present Dirichlet Process Mixtures with Uncertainty (DPMUnc), an extension of a Bayesian nonparametric clustering algorithm which makes use of the uncertainty associated with data points. We show that DPMUnc out-performs existing methods on simulated data. We cluster immune-mediated diseases (IMD) using GWAS summary statistics, which have uncertainty linked with the sample size of the study. DPMUnc separates autoimmune from autoinflammatory diseases and isolates other subgroups such as adult-onset arthritis. We additionally consider how DPMUnc can be used to cluster gene expression datasets that have been summarised using gene signatures. We first introduce a novel procedure for generating a summary of a gene signature on a dataset different to the one where it was discovered, which incorporates a measure of the variability in expression across signature genes within each individual. We summarise three public gene expression datasets containing patients with a range of IMD, using three relevant gene signatures. We find association between disease and the clusters returned by DPMUnc, with clustering structure replicated across the datasets. The significance of this work is two-fold. Firstly, we demonstrate that when data has associated uncertainty, this uncertainty should be used to inform clustering and we present a method which does this, DPMUnc. Secondly, we present a procedure for using gene signatures in datasets other than where they were originally defined. We show the value of this procedure by summarising gene expression data from patients with immune-mediated diseases using relevant gene signatures, and clustering these patients using DPMUnc.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信