{"title":"Learning spatial hearing via innate mechanisms.","authors":"Yang Chu, Wayne Luk, Dan F M Goodman","doi":"10.1371/journal.pcbi.1013543","DOIUrl":null,"url":null,"abstract":"<p><p>The acoustic cues used by humans and other animals to localise sounds are subtle, and change throughout our lifetime. This means that we need to constantly relearn or recalibrate our sound localisation circuit. This is often thought of as a \"supervised\" learning process where a \"teacher\" (for example, a parent, or your visual system) tells you whether or not you guessed the location correctly, and you use this information to update your localiser. However, there is not always an obvious teacher (for example in babies or blind people). Using computational models, we showed that approximate feedback from a simple innate circuit, such as that can distinguish left from right (e.g. the auditory orienting response), is sufficient to learn an accurate full-range sound localiser. Moreover, using this mechanism in addition to supervised learning can more robustly maintain the adaptive neural representation. We find several possible neural mechanisms that could underlie this type of learning, and hypothesise that multiple mechanisms may be present and provide examples in which these mechanisms can interact with each other. We conclude that when studying spatial hearing, we should not assume that the only source of learning is from the visual system or other supervisory signals. Further study of the proposed mechanisms could allow us to design better rehabilitation programmes to accelerate relearning/recalibration of spatial hearing.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 10","pages":"e1013543"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013543","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The acoustic cues used by humans and other animals to localise sounds are subtle, and change throughout our lifetime. This means that we need to constantly relearn or recalibrate our sound localisation circuit. This is often thought of as a "supervised" learning process where a "teacher" (for example, a parent, or your visual system) tells you whether or not you guessed the location correctly, and you use this information to update your localiser. However, there is not always an obvious teacher (for example in babies or blind people). Using computational models, we showed that approximate feedback from a simple innate circuit, such as that can distinguish left from right (e.g. the auditory orienting response), is sufficient to learn an accurate full-range sound localiser. Moreover, using this mechanism in addition to supervised learning can more robustly maintain the adaptive neural representation. We find several possible neural mechanisms that could underlie this type of learning, and hypothesise that multiple mechanisms may be present and provide examples in which these mechanisms can interact with each other. We conclude that when studying spatial hearing, we should not assume that the only source of learning is from the visual system or other supervisory signals. Further study of the proposed mechanisms could allow us to design better rehabilitation programmes to accelerate relearning/recalibration of spatial hearing.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.