Jose Cleydson F Silva, Layla Schuster, Nick Sexson, Melissa Erdem, Ryan Hulke, Matias Kirst, Marcio F R Resende, Raquel Dias
{"title":"InteracTor:用于分析蛋白质结构-相互作用-功能关系的特征工程和可解释的AI。","authors":"Jose Cleydson F Silva, Layla Schuster, Nick Sexson, Melissa Erdem, Ryan Hulke, Matias Kirst, Marcio F R Resende, Raquel Dias","doi":"10.1371/journal.pcbi.1013038","DOIUrl":null,"url":null,"abstract":"<p><p>Characterizing protein families' structural and functional diversity is essential for understanding their biological roles. Traditional analyses often focus on primary and secondary structures, which may not fully capture complex protein interactions. Here we introduce InteracTor, a novel toolkit that extracts multimodal features from protein three-dimensional (3D) structures, including interatomic interactions like hydrogen bonds, van der Waals forces, and hydrophobic contacts. By integrating eXplainable Artificial Intelligence (XAI) techniques, we quantified the importance of the extracted features in the classification of protein structural and functional families. InteracTor's interpref features enable mechanistic insights into the determinants of protein structure, function, and dynamics, offering a transparent means to assess their predictive power within machine learning models. Interatomic interaction features extracted by InteracTor demonstrated superior predictive power for protein family classification compared to features based solely on primary or secondary structure, revealing the importance of considering specific tertiary contacts in computational protein analysis. This work provides a robust framework for future studies aiming to enhance the capabilities of models for protein function prediction and drug discovery.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 10","pages":"e1013038"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"InteracTor: Feature engineering and explainable AI for profiling protein structure-interaction-function relationships.\",\"authors\":\"Jose Cleydson F Silva, Layla Schuster, Nick Sexson, Melissa Erdem, Ryan Hulke, Matias Kirst, Marcio F R Resende, Raquel Dias\",\"doi\":\"10.1371/journal.pcbi.1013038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Characterizing protein families' structural and functional diversity is essential for understanding their biological roles. Traditional analyses often focus on primary and secondary structures, which may not fully capture complex protein interactions. Here we introduce InteracTor, a novel toolkit that extracts multimodal features from protein three-dimensional (3D) structures, including interatomic interactions like hydrogen bonds, van der Waals forces, and hydrophobic contacts. By integrating eXplainable Artificial Intelligence (XAI) techniques, we quantified the importance of the extracted features in the classification of protein structural and functional families. InteracTor's interpref features enable mechanistic insights into the determinants of protein structure, function, and dynamics, offering a transparent means to assess their predictive power within machine learning models. Interatomic interaction features extracted by InteracTor demonstrated superior predictive power for protein family classification compared to features based solely on primary or secondary structure, revealing the importance of considering specific tertiary contacts in computational protein analysis. This work provides a robust framework for future studies aiming to enhance the capabilities of models for protein function prediction and drug discovery.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 10\",\"pages\":\"e1013038\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013038\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013038","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
InteracTor: Feature engineering and explainable AI for profiling protein structure-interaction-function relationships.
Characterizing protein families' structural and functional diversity is essential for understanding their biological roles. Traditional analyses often focus on primary and secondary structures, which may not fully capture complex protein interactions. Here we introduce InteracTor, a novel toolkit that extracts multimodal features from protein three-dimensional (3D) structures, including interatomic interactions like hydrogen bonds, van der Waals forces, and hydrophobic contacts. By integrating eXplainable Artificial Intelligence (XAI) techniques, we quantified the importance of the extracted features in the classification of protein structural and functional families. InteracTor's interpref features enable mechanistic insights into the determinants of protein structure, function, and dynamics, offering a transparent means to assess their predictive power within machine learning models. Interatomic interaction features extracted by InteracTor demonstrated superior predictive power for protein family classification compared to features based solely on primary or secondary structure, revealing the importance of considering specific tertiary contacts in computational protein analysis. This work provides a robust framework for future studies aiming to enhance the capabilities of models for protein function prediction and drug discovery.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.