{"title":"Molecular mechanisms of <i>Piriformospora indica</i> mediated growth promotion in plants.","authors":"Anish Kundu, Jyothilakshmi Vadassery","doi":"10.1080/15592324.2022.2096785","DOIUrl":"https://doi.org/10.1080/15592324.2022.2096785","url":null,"abstract":"<p><p><i>Piriformospora indica</i> is a root endophyte having a vast host range in plants. Plant growth promotion is a hallmark of the symbiotic interaction of <i>P. indica</i> with its hosts. As a plant growth-promoting microorganism, it is important to know the mechanisms involved in growth induction. Hitherto, multiple reports have demonstrated various molecular mechanisms of <i>P. indica</i>-mediated growth promotion, including protein kinase-mediated pathway, enhanced nutrient uptake and polyamine-mediated growth phytohormone elevation. Here, we briefly present a discussion on the state-of-the-art molecular mechanisms of <i>P. indica</i>-mediated growth promotion in host plants, in order to obtain a future prospect on utilization of this microorganism for sustainable agriculture.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2096785"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40488902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of indirect plant-plant interaction via root exudate on growth and leaf chemical contents in <i>Rumex obtusifolius</i>.","authors":"Haruna Ohsaki, Akira Yamawo","doi":"10.1080/15592324.2022.2050628","DOIUrl":"https://doi.org/10.1080/15592324.2022.2050628","url":null,"abstract":"<p><p>Belowground plant-plant interactions can affect the concentrations of leaf chemicals, but the mechanism is not clear. Here, we investigated the effects of intra- and interspecific root exudates on the growth and leaf chemical content of <i>Rumex obtusifolius</i>. Seedlings of <i>R. obtusifolius</i> were grown with exposure to root exudates collected from other <i>R. obtusifolius</i> plants or from <i>Trifolium repens, Festuca ovina</i>, or <i>Plantago asiatica</i> plants, and the total phenolic, condensed tannin, dry biomass, and chlorophyll contents of the leaves were examined. The root exudates from conspecific plants had no effect on the total phenolic, condensed tannin, and chlorophyll contents of the leaves but did significantly reduce the dry leaf biomass. Root exudates from heterospecific plants had different effects depending on the species. These results were different from the results of a previous study that examined the effects of direct plant-plant interaction in <i>R. obtusifolius</i>. Thus, indirect interaction via root exudates induces different effects in leaves from direct interaction.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2050628"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40315797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Zhou, Kang Zhang, Xu Zheng, Guanyu Wang, Hongzhe Cao, Jihong Xing, Jingao Dong
{"title":"BTB and TAZ domain protein BT4 positively regulates the resistance to <i>Botrytis cinerea</i> in <i>Arabidopsis</i>.","authors":"Fan Zhou, Kang Zhang, Xu Zheng, Guanyu Wang, Hongzhe Cao, Jihong Xing, Jingao Dong","doi":"10.1080/15592324.2022.2104003","DOIUrl":"https://doi.org/10.1080/15592324.2022.2104003","url":null,"abstract":"<p><p><i>BT4</i> gene was identified to play an important role in <i>Arabidopsis</i> resistance to <i>pst</i> DC3000 in preliminary studies. However, the specific function and molecular mechanism of <i>BT4</i> gene in regulation of <i>Arabidopsis</i> resistance to <i>Botrytis cinerea</i> had not been described to date. In this study, we found that the expression of <i>BT4</i> was induced by wounding and <i>B. cinerea</i> inoculation in <i>Arabidopsis</i>. After inoculated with <i>B. cinerea</i>, T-DNA insertion mutants of the <i>BT4</i> gene, <i>bt4</i>, showed significant susceptibility symptoms, whereas no significant symptoms were found in wild-type (WT), the complemented transgenic plants (CE), and the overexpression transgenic plants (OE). After inoculated with <i>B. cinerea</i>, the expression levels of <i>JAR1</i> and <i>PDF1.2</i> genes in <i>bt4</i> mutant were induced; however, the expression levels of these genes in <i>bt4</i> mutant were significantly lower than those in the WT, CE, and OE. These results indicated that the <i>BT4</i> positively regulate the expression of genes in JA/ET signaling pathways. Therefore, the <i>BT4</i> may be involved in the regulation of JA/ET signaling pathways to affect <i>Arabidopsis</i> resistance to <i>B. cinerea</i>.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2104003"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40552380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya Wang, Dongsheng Yu, Hongmiao Zhao, Lanlan Jiang, Lei Gao, Yanan Song, Zebin Liu, Fang Bao, Congcong Hou, Yikun He, Chuanli Ju, Legong Li, Dongdong Kong
{"title":"A glutamate receptor-like gene is involved in ABA-mediated growth control in <i>Physcomitrium</i> (<i>Physcomitrella) patens</i>.","authors":"Ya Wang, Dongsheng Yu, Hongmiao Zhao, Lanlan Jiang, Lei Gao, Yanan Song, Zebin Liu, Fang Bao, Congcong Hou, Yikun He, Chuanli Ju, Legong Li, Dongdong Kong","doi":"10.1080/15592324.2022.2145057","DOIUrl":"https://doi.org/10.1080/15592324.2022.2145057","url":null,"abstract":"<p><p>Plant glutamate receptor homologs (GLRs), which function as key calcium channels, play pivotal roles in various developmental processes as well as stress responses. The moss <i>Physcomitrium patens</i>, a representative of the earliest land plant lineage, possess multiple pathways of hormone signaling for coordinating growth and adaptation responses. However, it is not clear whether GLRs are connected to hormone-mediated growth control in the moss. In this study, we report that one of the two GLRs in <i>P. patens</i>, PpGLR1, involves in abscisic acid (ABA)-mediated growth regulation. ABA represses the growth of wild-type moss, and intriguingly, the <i>PpGLR1</i> transcript levels are significantly increased in response to ABA treatment, based on both gene expression and the <i>PpGLR1pro::GUS</i> reporter results. Furthermore, the growth of <i>Ppglr1</i> knockout moss mutants is hypersensitive to ABA treatment. These results suggest that PpGLR1 plays a critical role in ABA-mediated growth regulation, which provide useful information for our further investigation of the regulatory mechanism between Ca<sup>2+</sup> signal and ABA in moss growth control.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2145057"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10413523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nabil Killiny, Shelley E Jones, Pedro Gonzalez-Blanco
{"title":"Silencing of δ-aminolevulinic acid dehydratase via virus induced gene silencing promotes callose deposition in plant phloem.","authors":"Nabil Killiny, Shelley E Jones, Pedro Gonzalez-Blanco","doi":"10.1080/15592324.2021.2024733","DOIUrl":"https://doi.org/10.1080/15592324.2021.2024733","url":null,"abstract":"<p><p>The <i>δ</i>-aminolevulinic acid dehydratase (ALAD) enzyme is an intermediate in the biosynthetic pathway of tetrapyrroles. It combines two <i>δ</i>-aminolevulinic acid (<i>δ</i>-ALA) molecules to form the pyrrole, porphobilinogen, an important precursor for plant pigments involved in photosynthesis, respiration, light-sensing, and nutrient uptake. Our recent efforts showed that, in citrus, silencing of <i>ALAD</i> gene via <i>Citrus tristeza virus-</i>induced gene silencing, caused yellow spots and necrosis in leaves and in developing new shoots. Silencing of <i>ALAD</i> gene reduced leaf pigments and altered leaf metabolites. Moreover, total phenolic content, H<sub>2</sub>O<sub>2,</sub> and reactive oxygen species (ROS) increased, indicating that silencing of <i>ALAD</i> induced severe stress. Herein, we hypothesized that conditions including lower sucrose, elevated ROS, alteration of microRNA involved in RNAi regulatory protein Argonaute 1 (AGO1) and ROS lead to higher deposition of callose in phloem tissues. Using aniline blue staining and gene expression analysis of callose synthases, we showed significant deposition of callose in <i>ALAD</i>-silenced citrus.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2024733"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10471657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A DEK domain-containing protein GhDEK2D mediated <i>Gossypium hirsutum</i> enhanced resistance to <i>Verticillium dahliae</i>.","authors":"Jinglong Zhou, Lihong Zhao, Yajie Wu, Xiaojian Zhang, Sheng Cheng, Feng Wei, Yalin Zhang, Heqin Zhu, Yi Zhou, Zili Feng, Hongjie Feng","doi":"10.1080/15592324.2021.2024738","DOIUrl":"https://doi.org/10.1080/15592324.2021.2024738","url":null,"abstract":"<p><p>DEK is associated with DNA replication and break repair, mRNA splicing, and transcriptional regulation, which had been studied in humans and mammals. The function of DEK in plants was poorly understood. In this study, <i>GhDEK</i>2D was identified in <i>Gossypium hirsutum</i> by genome-wide and post-translational modifications. GhDEK2D had been phosphorylated, acetylated and ubiquitylated under <i>Verticillium dahliae</i> (<i>Vd</i>) challenge. The <i>GhDEK2D</i>-silenced cotton decreased resistance against <i>Vd</i>. In <i>GhDEK2D</i>-silenced cotton plants, the reactive oxygen species was activated, the callose, xylogen, hypersensitive reaction (HR) and expression levels of defense-related genes were reduced. Homozygous overexpressing-GhDEK2D transgenic <i>Arabidopsis</i> lines were more resistant to Verticillium wilt (Vw). We propose that GhDEK2D was a potential molecular target for improving resistance to Vw in cotton.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2024738"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10647165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relationship between reduction in rice (Nipponbare) leaf blade size under elevated CO<sub>2</sub> and miR396-<i>GRF</i> module.","authors":"Yonghyun Kim, Sumire Takahashi, Mitsue Miyao","doi":"10.1080/15592324.2022.2041280","DOIUrl":"https://doi.org/10.1080/15592324.2022.2041280","url":null,"abstract":"<p><p>Elevated CO<sub>2</sub> (eCO<sub>2</sub>; 1000 ppm) influences developing rice leaf formation, reducing leaf blade length and width as compared to rice grown under ambient CO<sub>2</sub> (aCO<sub>2</sub>; 400 ppm). Since micro RNAs (miRNAs) are known to play multiple roles in plant development, we hypothesized that miRNAs might be involved in modulating leaf size under eCO<sub>2</sub> conditions. To identify miRNAs responding to eCO<sub>2</sub>, we profiled miRNA levels in developing rice leaves (P4; plastochron number of the fourth-youngest leaf) under eCO<sub>2</sub> using small RNA-seq. We detected 18 mature miRNA sequences for which expression levels varied more than two-fold between the eCO<sub>2</sub> and aCO<sub>2</sub> conditions. Among them, only miR396e and miR396f significantly differed between the two conditions. Additionally, the expression of <i>growth-regulating factors</i> (<i>GRFs</i>), potential target mRNA of miR396s, were repressed under the eCO<sub>2</sub> condition. We used an antisense oligonucleotide approach to confirm that single-strand DNA corresponding to the miR396e sequence effectively downregulated <i>GRF</i> expression in developing leaves, reducing the leaf blade length, such as for rice grown under eCO<sub>2</sub>. These results suggest that the miR396-<i>GRF</i> module is crucially relevant to controlling rice leaf blade length in eCO<sub>2</sub> environments.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2041280"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/08/KPSB_17_2041280.PMC8959511.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40314232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joo Yong Kim, Seung Ju Lee, Wang Ki Min, Seoyeon Cha, Jong Tae Song, Hak Soo Seo
{"title":"COP1 controls salt stress tolerance by modulating sucrose content.","authors":"Joo Yong Kim, Seung Ju Lee, Wang Ki Min, Seoyeon Cha, Jong Tae Song, Hak Soo Seo","doi":"10.1080/15592324.2022.2096784","DOIUrl":"https://doi.org/10.1080/15592324.2022.2096784","url":null,"abstract":"<p><p>The E3 ubiquitin ligase Constitutive Photomorphogenic 1 (COP1) plays evolutionarily conserved and divergent roles. In plants, COP1 regulates a large number of developmental processes including photomorphogenesis, seedling emergence, and gravitropism. Nevertheless, its function in abiotic stress tolerance remains largely unknown. Here, we demonstrate the role of COP1 in salt stress tolerance in <i>Arabidopsis thaliana</i>. In soil, <i>cop1-4</i> and <i>cop1-6</i> mutants were more tolerant to high salinity than wild-type (WT) plants during vegetative growth. However, in high salt-containing Murashige and Skoog (MS) medium, <i>cop1-4</i> and <i>cop1-6</i> seedlings exhibited significantly impaired growth compared with WT plants. Notably, <i>cop1-4</i> and <i>cop1-6</i> seedlings recovered their growth to the WT level upon exogenous sucrose treatment even under high salinity conditions. Compared with WT plants, the sucrose content of <i>cop1-4</i> mutants was much higher at the vegetative growth stage but similar at the seedling stage. Upon exogenous sucrose supply, root elongation was significantly stimulated in <i>cop1-4</i> seedlings but only slightly stimulated in WT plants. Thus, no significant difference was observed in root length between the two genotypes. Altogether, our data indicate that <i>cop1</i> mutants are more tolerant to salt stress than WT plants, and the salt tolerance of <i>cop1</i> mutants is correlated with their sucrose content.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2096784"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40602438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taiaba Afrin, Caitlin N Costello, Amber N Monella, Camilla J Kørner, Karolina M Pajerowska-Mukhtar
{"title":"The interplay of GTP-binding protein AGB1 with ER stress sensors IRE1a and IRE1b modulates Arabidopsis unfolded protein response and bacterial immunity.","authors":"Taiaba Afrin, Caitlin N Costello, Amber N Monella, Camilla J Kørner, Karolina M Pajerowska-Mukhtar","doi":"10.1080/15592324.2021.2018857","DOIUrl":"https://doi.org/10.1080/15592324.2021.2018857","url":null,"abstract":"<p><p>In eukaryotic cells, the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) results in ER stress that induces a cascade of reactions called the unfolded protein response (UPR). In Arabidopsis, the most conserved UPR sensor, Inositol-requiring enzyme 1 (IRE1), responds to both abiotic- and biotic-induced ER stress. Guanine nucleotide-binding proteins (G proteins) constitute another universal and conserved family of signal transducers that have been extensively investigated due to their ubiquitous presence and diverse nature of action. Arabidopsis GTP-binding protein β1 (AGB1) is the only G-protein β-subunit encoded by the Arabidopsis genome that is involved in numerous signaling pathways. Mounting evidence suggests the existence of a crosstalk between IRE1 and G protein signaling during ER stress. AGB1 has previously been shown to control a distinct UPR pathway independently of IRE1 when treated with an ER stress inducer tunicamycin. Our results obtained with combinatorial knockout mutants support the hypothesis that both IRE1 and AGB1 synergistically contribute to ER stress responses chemically induced by dithiothreitol (DTT) as well as to the immune responses against a phytopathogenic bacterium <i>Pseudomonas syringae</i> pv. tomato strain DC3000. Our study highlights the crosstalk between the plant UPR transducers under abiotic and biotic stress.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2018857"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39775160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preinvasive nonhost resistance of <i>Arabidopsis</i> against melanized appressorium-mediated entry of multiple nonadapted <i>Colletotrichum</i> fungi.","authors":"Hiroki Irieda","doi":"10.1080/15592324.2021.2018218","DOIUrl":"https://doi.org/10.1080/15592324.2021.2018218","url":null,"abstract":"<p><p>Nonhost plants effectively block a vast number of nonadapted fungal pathogens at the preinvasive stage. On the host plants, adapted fungal pathogens such as <i>Colletotrichum</i> species invade into plant epidermal cell by penetration peg developed from melanized appressorium, followed by invasive hyphal extension. I reported nonadapted <i>Colletotrichum</i> fungi that showed an increased rate of melanized appressorium-mediated entry (MAE) into the <i>pen2</i> mutant of nonhost <i>Arabidopsis thaliana</i> (hereafter <i>Arabidopsis</i>). It was also found that other MAE-type nonadapted <i>Colletotrichum</i> fungi with no penetration into the <i>pen2</i> mutant invaded <i>Arabidopsis</i> in the presence of additional mutations such as <i>edr1</i>, <i>gsh1</i>, <i>eds5</i>, <i>cas</i>, and <i>chup1</i> in the <i>pen2</i> background. Thus, many immune components contribute to the preinvasive nonhost resistance (NHR) of <i>Arabidopsis</i> against <i>Colletotrichum</i> MAE, and PEN2-related defense takes priority over other defense pathways. Here, I show that among the above nonadapted fungi, <i>Colletotrichum nymphaeae</i> PL1-1-b exhibited relatively lower incompatibility with the nonhost <i>Arabidopsis</i> with increased MAE in each single mutant of <i>edr1</i>, <i>gsh1</i>, <i>eds5</i>, and <i>cas</i>, although other nonadapted fungi almost never invaded these single mutants. Based on the relationships between <i>Colletotrichum</i> MAE and the <i>Arabidopsis</i> immune-related components, <i>Colletotrichum-Arabidopsis</i> incompatibility and multilayered immunity in the preinvasive NHR of <i>Arabidopsis</i> are discussed in this study.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2018218"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39783062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}