Plant Signaling & Behavior最新文献

筛选
英文 中文
Functional characterization of C-TERMINALLY ENCODED PEPTIDE (CEP) family in Brassica rapa L. 油菜c端编码肽(CEP)家族的功能表征。
IF 2.9 4区 生物学
Plant Signaling & Behavior Pub Date : 2022-12-31 Epub Date: 2021-12-30 DOI: 10.1080/15592324.2021.2021365
Ziwen Qiu, Keqing Zhuang, Yiting Liu, Xiaomin Ge, Chen Chen, Songping Hu, Huibin Han
{"title":"Functional characterization of C-TERMINALLY ENCODED PEPTIDE (CEP) family in <i>Brassica rapa</i> L.","authors":"Ziwen Qiu,&nbsp;Keqing Zhuang,&nbsp;Yiting Liu,&nbsp;Xiaomin Ge,&nbsp;Chen Chen,&nbsp;Songping Hu,&nbsp;Huibin Han","doi":"10.1080/15592324.2021.2021365","DOIUrl":"https://doi.org/10.1080/15592324.2021.2021365","url":null,"abstract":"<p><p>The small regulatory C-TERMINALLY ENCODED PEPTIDE (CEP) peptide family plays crucial roles in plant growth and stress response. However, little is known about this peptide family in Brassica species. Here, we performed a systematic analysis to identify the putative <i>Brassica rapa</i> L. <i>CEP</i> (<i>BrCEP</i>) gene family. In total, 27 <i>BrCEP</i> genes were identified and they were classified into four subgroups based on the CEP motifs similarity. <i>BrCEP</i> genes displayed distinct expression patterns in response to both developmental and several environmental signals, suggesting their broad roles during <i>Brassica rapa</i> development. Furthuremore, the synthetic BrCEP3 peptide accelerated <i>Brassica rapa</i> primary root growth in a hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and Ca<sup>2+</sup> dependent manner. In summary, our work will provide fundamental insights into the physiological function of CEP peptides during <i>Brassica rapa</i> development.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2021365"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39775158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in Platycodon grandiflorus. 桔梗WRKY转录因子的全转录组鉴定及其对茉莉酸甲酯的表达谱。
IF 2.9 4区 生物学
Plant Signaling & Behavior Pub Date : 2022-12-31 DOI: 10.1080/15592324.2022.2089473
Jing Li, Hanwen Yu, Mengli Liu, Bowen Chen, Nan Dong, Xiangwei Chang, Jutao Wang, Shihai Xing, Huasheng Peng, Liangping Zha, Shuangying Gui
{"title":"Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in <i>Platycodon grandiflorus</i>.","authors":"Jing Li,&nbsp;Hanwen Yu,&nbsp;Mengli Liu,&nbsp;Bowen Chen,&nbsp;Nan Dong,&nbsp;Xiangwei Chang,&nbsp;Jutao Wang,&nbsp;Shihai Xing,&nbsp;Huasheng Peng,&nbsp;Liangping Zha,&nbsp;Shuangying Gui","doi":"10.1080/15592324.2022.2089473","DOIUrl":"https://doi.org/10.1080/15592324.2022.2089473","url":null,"abstract":"<p><p><i>Platycodon grandiflorus</i>, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of <i>P. grandiflorus</i> are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in <i>P. grandiflorus</i>. In this study, 27 PgWRKYs were identified in the <i>P. grandiflorus</i> transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2089473"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/59/73/KPSB_17_2089473.PMC9225661.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40177651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Molecular mechanisms of Piriformospora indica mediated growth promotion in plants. 梨形孢子菌促进植物生长的分子机制。
IF 2.9 4区 生物学
Plant Signaling & Behavior Pub Date : 2022-12-31 DOI: 10.1080/15592324.2022.2096785
Anish Kundu, Jyothilakshmi Vadassery
{"title":"Molecular mechanisms of <i>Piriformospora indica</i> mediated growth promotion in plants.","authors":"Anish Kundu,&nbsp;Jyothilakshmi Vadassery","doi":"10.1080/15592324.2022.2096785","DOIUrl":"https://doi.org/10.1080/15592324.2022.2096785","url":null,"abstract":"<p><p><i>Piriformospora indica</i> is a root endophyte having a vast host range in plants. Plant growth promotion is a hallmark of the symbiotic interaction of <i>P. indica</i> with its hosts. As a plant growth-promoting microorganism, it is important to know the mechanisms involved in growth induction. Hitherto, multiple reports have demonstrated various molecular mechanisms of <i>P. indica</i>-mediated growth promotion, including protein kinase-mediated pathway, enhanced nutrient uptake and polyamine-mediated growth phytohormone elevation. Here, we briefly present a discussion on the state-of-the-art molecular mechanisms of <i>P. indica</i>-mediated growth promotion in host plants, in order to obtain a future prospect on utilization of this microorganism for sustainable agriculture.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2096785"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40488902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Effects of indirect plant-plant interaction via root exudate on growth and leaf chemical contents in Rumex obtusifolius. 植物与植物间通过根系分泌物间接相互作用对黑叶梅生长和叶片化学物质含量的影响。
IF 2.9 4区 生物学
Plant Signaling & Behavior Pub Date : 2022-12-31 DOI: 10.1080/15592324.2022.2050628
Haruna Ohsaki, Akira Yamawo
{"title":"Effects of indirect plant-plant interaction via root exudate on growth and leaf chemical contents in <i>Rumex obtusifolius</i>.","authors":"Haruna Ohsaki,&nbsp;Akira Yamawo","doi":"10.1080/15592324.2022.2050628","DOIUrl":"https://doi.org/10.1080/15592324.2022.2050628","url":null,"abstract":"<p><p>Belowground plant-plant interactions can affect the concentrations of leaf chemicals, but the mechanism is not clear. Here, we investigated the effects of intra- and interspecific root exudates on the growth and leaf chemical content of <i>Rumex obtusifolius</i>. Seedlings of <i>R. obtusifolius</i> were grown with exposure to root exudates collected from other <i>R. obtusifolius</i> plants or from <i>Trifolium repens, Festuca ovina</i>, or <i>Plantago asiatica</i> plants, and the total phenolic, condensed tannin, dry biomass, and chlorophyll contents of the leaves were examined. The root exudates from conspecific plants had no effect on the total phenolic, condensed tannin, and chlorophyll contents of the leaves but did significantly reduce the dry leaf biomass. Root exudates from heterospecific plants had different effects depending on the species. These results were different from the results of a previous study that examined the effects of direct plant-plant interaction in <i>R. obtusifolius</i>. Thus, indirect interaction via root exudates induces different effects in leaves from direct interaction.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2050628"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40315797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BTB and TAZ domain protein BT4 positively regulates the resistance to Botrytis cinerea in Arabidopsis. BTB和TAZ结构域蛋白BT4正调控拟南芥对灰霉病的抗性。
IF 2.9 4区 生物学
Plant Signaling & Behavior Pub Date : 2022-12-31 DOI: 10.1080/15592324.2022.2104003
Fan Zhou, Kang Zhang, Xu Zheng, Guanyu Wang, Hongzhe Cao, Jihong Xing, Jingao Dong
{"title":"BTB and TAZ domain protein BT4 positively regulates the resistance to <i>Botrytis cinerea</i> in <i>Arabidopsis</i>.","authors":"Fan Zhou,&nbsp;Kang Zhang,&nbsp;Xu Zheng,&nbsp;Guanyu Wang,&nbsp;Hongzhe Cao,&nbsp;Jihong Xing,&nbsp;Jingao Dong","doi":"10.1080/15592324.2022.2104003","DOIUrl":"https://doi.org/10.1080/15592324.2022.2104003","url":null,"abstract":"<p><p><i>BT4</i> gene was identified to play an important role in <i>Arabidopsis</i> resistance to <i>pst</i> DC3000 in preliminary studies. However, the specific function and molecular mechanism of <i>BT4</i> gene in regulation of <i>Arabidopsis</i> resistance to <i>Botrytis cinerea</i> had not been described to date. In this study, we found that the expression of <i>BT4</i> was induced by wounding and <i>B. cinerea</i> inoculation in <i>Arabidopsis</i>. After inoculated with <i>B. cinerea</i>, T-DNA insertion mutants of the <i>BT4</i> gene, <i>bt4</i>, showed significant susceptibility symptoms, whereas no significant symptoms were found in wild-type (WT), the complemented transgenic plants (CE), and the overexpression transgenic plants (OE). After inoculated with <i>B. cinerea</i>, the expression levels of <i>JAR1</i> and <i>PDF1.2</i> genes in <i>bt4</i> mutant were induced; however, the expression levels of these genes in <i>bt4</i> mutant were significantly lower than those in the WT, CE, and OE. These results indicated that the <i>BT4</i> positively regulate the expression of genes in JA/ET signaling pathways. Therefore, the <i>BT4</i> may be involved in the regulation of JA/ET signaling pathways to affect <i>Arabidopsis</i> resistance to <i>B. cinerea</i>.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2104003"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40552380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous brassinosteroids promotes root growth, enhances stress tolerance, and increases yield in maize. 外源油菜素内酯促进玉米根系生长,增强抗逆性,提高产量。
IF 2.8 4区 生物学
Plant Signaling & Behavior Pub Date : 2022-12-31 DOI: 10.1080/15592324.2022.2095139
Hao Zhang, Dan Zhao, Ziyan Tang, Ying Zhang, Ke Zhang, Jingao Dong, Fengru Wang
{"title":"Exogenous brassinosteroids promotes root growth, enhances stress tolerance, and increases yield in maize.","authors":"Hao Zhang, Dan Zhao, Ziyan Tang, Ying Zhang, Ke Zhang, Jingao Dong, Fengru Wang","doi":"10.1080/15592324.2022.2095139","DOIUrl":"10.1080/15592324.2022.2095139","url":null,"abstract":"<p><p>Brassinosteroids (BRs) regulate of maize (<i>Zea mays</i> L.) growth, but the underlying molecular mechanism remains unclear. In this study, we used a multi-disciplinary approach to determine how BRs regulate maize morphology and physiology during development. Treatment with the BRs promoted primary root the elongation and growth during germination, and the early development of lateral roots. BRs treatment during the middle growth stage increased the levels of various stress resistance factors, and enhanced resistance to lodging, likely by protecting the plant against stem rot and sheath rot. BRs had no significant effect on plant height during late growth, but it increased leaf angle and photosynthetic efficiency, as well as yield and quality traits. Our findings increase our understanding of the regulatory effects of BR on maize root growth and development and the mechanism by which BR improves disease resistance, which could further the potential for using BR to improve maize yield.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2095139"},"PeriodicalIF":2.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40463076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A glutamate receptor-like gene is involved in ABA-mediated growth control in Physcomitrium (Physcomitrella) patens. 一种谷氨酸受体样基因参与aba介导的小绒泡菌生长控制。
IF 2.9 4区 生物学
Plant Signaling & Behavior Pub Date : 2022-12-31 DOI: 10.1080/15592324.2022.2145057
Ya Wang, Dongsheng Yu, Hongmiao Zhao, Lanlan Jiang, Lei Gao, Yanan Song, Zebin Liu, Fang Bao, Congcong Hou, Yikun He, Chuanli Ju, Legong Li, Dongdong Kong
{"title":"A glutamate receptor-like gene is involved in ABA-mediated growth control in <i>Physcomitrium</i> (<i>Physcomitrella) patens</i>.","authors":"Ya Wang,&nbsp;Dongsheng Yu,&nbsp;Hongmiao Zhao,&nbsp;Lanlan Jiang,&nbsp;Lei Gao,&nbsp;Yanan Song,&nbsp;Zebin Liu,&nbsp;Fang Bao,&nbsp;Congcong Hou,&nbsp;Yikun He,&nbsp;Chuanli Ju,&nbsp;Legong Li,&nbsp;Dongdong Kong","doi":"10.1080/15592324.2022.2145057","DOIUrl":"https://doi.org/10.1080/15592324.2022.2145057","url":null,"abstract":"<p><p>Plant glutamate receptor homologs (GLRs), which function as key calcium channels, play pivotal roles in various developmental processes as well as stress responses. The moss <i>Physcomitrium patens</i>, a representative of the earliest land plant lineage, possess multiple pathways of hormone signaling for coordinating growth and adaptation responses. However, it is not clear whether GLRs are connected to hormone-mediated growth control in the moss. In this study, we report that one of the two GLRs in <i>P. patens</i>, PpGLR1, involves in abscisic acid (ABA)-mediated growth regulation. ABA represses the growth of wild-type moss, and intriguingly, the <i>PpGLR1</i> transcript levels are significantly increased in response to ABA treatment, based on both gene expression and the <i>PpGLR1pro::GUS</i> reporter results. Furthermore, the growth of <i>Ppglr1</i> knockout moss mutants is hypersensitive to ABA treatment. These results suggest that PpGLR1 plays a critical role in ABA-mediated growth regulation, which provide useful information for our further investigation of the regulatory mechanism between Ca<sup>2+</sup> signal and ABA in moss growth control.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2145057"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10413523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Silencing of δ-aminolevulinic acid dehydratase via virus induced gene silencing promotes callose deposition in plant phloem. 病毒诱导的δ-氨基乙酰丙酸脱水酶基因沉默促进植物韧皮部胼胝质沉积。
IF 2.9 4区 生物学
Plant Signaling & Behavior Pub Date : 2022-12-31 DOI: 10.1080/15592324.2021.2024733
Nabil Killiny, Shelley E Jones, Pedro Gonzalez-Blanco
{"title":"Silencing of δ-aminolevulinic acid dehydratase via virus induced gene silencing promotes callose deposition in plant phloem.","authors":"Nabil Killiny,&nbsp;Shelley E Jones,&nbsp;Pedro Gonzalez-Blanco","doi":"10.1080/15592324.2021.2024733","DOIUrl":"https://doi.org/10.1080/15592324.2021.2024733","url":null,"abstract":"<p><p>The <i>δ</i>-aminolevulinic acid dehydratase (ALAD) enzyme is an intermediate in the biosynthetic pathway of tetrapyrroles. It combines two <i>δ</i>-aminolevulinic acid (<i>δ</i>-ALA) molecules to form the pyrrole, porphobilinogen, an important precursor for plant pigments involved in photosynthesis, respiration, light-sensing, and nutrient uptake. Our recent efforts showed that, in citrus, silencing of <i>ALAD</i> gene via <i>Citrus tristeza virus-</i>induced gene silencing, caused yellow spots and necrosis in leaves and in developing new shoots. Silencing of <i>ALAD</i> gene reduced leaf pigments and altered leaf metabolites. Moreover, total phenolic content, H<sub>2</sub>O<sub>2,</sub> and reactive oxygen species (ROS) increased, indicating that silencing of <i>ALAD</i> induced severe stress. Herein, we hypothesized that conditions including lower sucrose, elevated ROS, alteration of microRNA involved in RNAi regulatory protein Argonaute 1 (AGO1) and ROS lead to higher deposition of callose in phloem tissues. Using aniline blue staining and gene expression analysis of callose synthases, we showed significant deposition of callose in <i>ALAD</i>-silenced citrus.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2024733"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10471657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A DEK domain-containing protein GhDEK2D mediated Gossypium hirsutum enhanced resistance to Verticillium dahliae. 含有DEK结构域的蛋白GhDEK2D介导的棉花增强了对大丽花黄萎病的抗性。
IF 2.9 4区 生物学
Plant Signaling & Behavior Pub Date : 2022-12-31 DOI: 10.1080/15592324.2021.2024738
Jinglong Zhou, Lihong Zhao, Yajie Wu, Xiaojian Zhang, Sheng Cheng, Feng Wei, Yalin Zhang, Heqin Zhu, Yi Zhou, Zili Feng, Hongjie Feng
{"title":"A DEK domain-containing protein GhDEK2D mediated <i>Gossypium hirsutum</i> enhanced resistance to <i>Verticillium dahliae</i>.","authors":"Jinglong Zhou,&nbsp;Lihong Zhao,&nbsp;Yajie Wu,&nbsp;Xiaojian Zhang,&nbsp;Sheng Cheng,&nbsp;Feng Wei,&nbsp;Yalin Zhang,&nbsp;Heqin Zhu,&nbsp;Yi Zhou,&nbsp;Zili Feng,&nbsp;Hongjie Feng","doi":"10.1080/15592324.2021.2024738","DOIUrl":"https://doi.org/10.1080/15592324.2021.2024738","url":null,"abstract":"<p><p>DEK is associated with DNA replication and break repair, mRNA splicing, and transcriptional regulation, which had been studied in humans and mammals. The function of DEK in plants was poorly understood. In this study, <i>GhDEK</i>2D was identified in <i>Gossypium hirsutum</i> by genome-wide and post-translational modifications. GhDEK2D had been phosphorylated, acetylated and ubiquitylated under <i>Verticillium dahliae</i> (<i>Vd</i>) challenge. The <i>GhDEK2D</i>-silenced cotton decreased resistance against <i>Vd</i>. In <i>GhDEK2D</i>-silenced cotton plants, the reactive oxygen species was activated, the callose, xylogen, hypersensitive reaction (HR) and expression levels of defense-related genes were reduced. Homozygous overexpressing-GhDEK2D transgenic <i>Arabidopsis</i> lines were more resistant to Verticillium wilt (Vw). We propose that GhDEK2D was a potential molecular target for improving resistance to Vw in cotton.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2024738"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10647165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Relationship between reduction in rice (Nipponbare) leaf blade size under elevated CO2 and miR396-GRF module. CO2升高条件下水稻叶片大小减小与miR396-GRF模块的关系
IF 2.9 4区 生物学
Plant Signaling & Behavior Pub Date : 2022-12-31 DOI: 10.1080/15592324.2022.2041280
Yonghyun Kim, Sumire Takahashi, Mitsue Miyao
{"title":"Relationship between reduction in rice (Nipponbare) leaf blade size under elevated CO<sub>2</sub> and miR396-<i>GRF</i> module.","authors":"Yonghyun Kim,&nbsp;Sumire Takahashi,&nbsp;Mitsue Miyao","doi":"10.1080/15592324.2022.2041280","DOIUrl":"https://doi.org/10.1080/15592324.2022.2041280","url":null,"abstract":"<p><p>Elevated CO<sub>2</sub> (eCO<sub>2</sub>; 1000 ppm) influences developing rice leaf formation, reducing leaf blade length and width as compared to rice grown under ambient CO<sub>2</sub> (aCO<sub>2</sub>; 400 ppm). Since micro RNAs (miRNAs) are known to play multiple roles in plant development, we hypothesized that miRNAs might be involved in modulating leaf size under eCO<sub>2</sub> conditions. To identify miRNAs responding to eCO<sub>2</sub>, we profiled miRNA levels in developing rice leaves (P4; plastochron number of the fourth-youngest leaf) under eCO<sub>2</sub> using small RNA-seq. We detected 18 mature miRNA sequences for which expression levels varied more than two-fold between the eCO<sub>2</sub> and aCO<sub>2</sub> conditions. Among them, only miR396e and miR396f significantly differed between the two conditions. Additionally, the expression of <i>growth-regulating factors</i> (<i>GRFs</i>), potential target mRNA of miR396s, were repressed under the eCO<sub>2</sub> condition. We used an antisense oligonucleotide approach to confirm that single-strand DNA corresponding to the miR396e sequence effectively downregulated <i>GRF</i> expression in developing leaves, reducing the leaf blade length, such as for rice grown under eCO<sub>2</sub>. These results suggest that the miR396-<i>GRF</i> module is crucially relevant to controlling rice leaf blade length in eCO<sub>2</sub> environments.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2041280"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/08/KPSB_17_2041280.PMC8959511.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40314232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信