Ya Wang, Dongsheng Yu, Hongmiao Zhao, Lanlan Jiang, Lei Gao, Yanan Song, Zebin Liu, Fang Bao, Congcong Hou, Yikun He, Chuanli Ju, Legong Li, Dongdong Kong
{"title":"A glutamate receptor-like gene is involved in ABA-mediated growth control in <i>Physcomitrium</i> (<i>Physcomitrella) patens</i>.","authors":"Ya Wang, Dongsheng Yu, Hongmiao Zhao, Lanlan Jiang, Lei Gao, Yanan Song, Zebin Liu, Fang Bao, Congcong Hou, Yikun He, Chuanli Ju, Legong Li, Dongdong Kong","doi":"10.1080/15592324.2022.2145057","DOIUrl":null,"url":null,"abstract":"<p><p>Plant glutamate receptor homologs (GLRs), which function as key calcium channels, play pivotal roles in various developmental processes as well as stress responses. The moss <i>Physcomitrium patens</i>, a representative of the earliest land plant lineage, possess multiple pathways of hormone signaling for coordinating growth and adaptation responses. However, it is not clear whether GLRs are connected to hormone-mediated growth control in the moss. In this study, we report that one of the two GLRs in <i>P. patens</i>, PpGLR1, involves in abscisic acid (ABA)-mediated growth regulation. ABA represses the growth of wild-type moss, and intriguingly, the <i>PpGLR1</i> transcript levels are significantly increased in response to ABA treatment, based on both gene expression and the <i>PpGLR1pro::GUS</i> reporter results. Furthermore, the growth of <i>Ppglr1</i> knockout moss mutants is hypersensitive to ABA treatment. These results suggest that PpGLR1 plays a critical role in ABA-mediated growth regulation, which provide useful information for our further investigation of the regulatory mechanism between Ca<sup>2+</sup> signal and ABA in moss growth control.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2145057"},"PeriodicalIF":2.8000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677993/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2022.2145057","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Plant glutamate receptor homologs (GLRs), which function as key calcium channels, play pivotal roles in various developmental processes as well as stress responses. The moss Physcomitrium patens, a representative of the earliest land plant lineage, possess multiple pathways of hormone signaling for coordinating growth and adaptation responses. However, it is not clear whether GLRs are connected to hormone-mediated growth control in the moss. In this study, we report that one of the two GLRs in P. patens, PpGLR1, involves in abscisic acid (ABA)-mediated growth regulation. ABA represses the growth of wild-type moss, and intriguingly, the PpGLR1 transcript levels are significantly increased in response to ABA treatment, based on both gene expression and the PpGLR1pro::GUS reporter results. Furthermore, the growth of Ppglr1 knockout moss mutants is hypersensitive to ABA treatment. These results suggest that PpGLR1 plays a critical role in ABA-mediated growth regulation, which provide useful information for our further investigation of the regulatory mechanism between Ca2+ signal and ABA in moss growth control.
期刊介绍:
Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.