{"title":"Mendel-200: Pea as a model system to analyze hormone-mediated stem elongation.","authors":"Ulrich Kutschera, Rajnish Khanna","doi":"10.1080/15592324.2023.2207845","DOIUrl":"10.1080/15592324.2023.2207845","url":null,"abstract":"<p><p>In a recent Review Article on Gregor Mendel's (1822-1884) work with pea (<i>Pisum sativum</i>)-plants, it was proposed that this crop species should be re-vitalized as a model organism for the study of cell- and organ growth. Here, we describe the effect of exogenous gibberellic acid (GA<sub>3</sub>) on the growth of the second internode in 4-day-old light-grown pea seedlings (<i>Pisum sativum</i>, large var. \"Senator\"). lnjection of glucose into the internode caused a growth-promoting effect similar to that of the hormone GA<sub>3</sub>. Imbibition of dry pea seeds in GA<sub>3</sub>, or water as control, resulted in a drastic enhancement in organ development in this tall variety. Similar results were reported for dwarf peas. These \"classical\" experimental protocols are suitable to study the elusive effect of gibberellins (which act in coordination with auxin) on the regulation of plant development at the biochemical and molecular levels.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"18 1","pages":"2207845"},"PeriodicalIF":2.9,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9471908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianying Yue, Yan Lu, Zhenqi Sun, Yuqing Guo, David San León, Fabio Pasin, Mingmin Zhao
{"title":"Methyltransferase-like (METTL) homologues participate in <i>Nicotiana benthamiana</i> antiviral responses.","authors":"Jianying Yue, Yan Lu, Zhenqi Sun, Yuqing Guo, David San León, Fabio Pasin, Mingmin Zhao","doi":"10.1080/15592324.2023.2214760","DOIUrl":"10.1080/15592324.2023.2214760","url":null,"abstract":"<p><p>Methyltransferase (MTase) enzymes catalyze the addition of a methyl group to a variety of biological substrates. MTase-like (METTL) proteins are Class I MTases whose enzymatic activities contribute to the epigenetic and epitranscriptomic regulation of multiple cellular processes. N<sup>6</sup>-adenosine methylation (m<sup>6</sup>A) is a common chemical modification of eukaryotic and viral RNA whose abundance is jointly regulated by MTases and METTLs, demethylases, and m<sup>6</sup>A binding proteins. m<sup>6</sup>A affects various cellular processes including RNA degradation, post-transcriptional processing, and antiviral immunity. Here, we used <i>Nicotiana benthamiana</i> and plum pox virus (PPV), an RNA virus of the <i>Potyviridae</i> family, to investigated the roles of MTases in plant-virus interaction. RNA sequencing analysis identified MTase transcripts that are differentially expressed during PPV infection; among these, accumulation of a METTL gene was significantly downregulated. Two <i>N.</i> <i>benthamiana</i> METTL transcripts (NbMETTL1 and NbMETTL2) were cloned and further characterized. Sequence and structural analyses of the two encoded proteins identified a conserved S-adenosyl methionine (SAM) binding domain, showing they are SAM-dependent MTases phylogenetically related to human METTL16 and <i>Arabidopsis thaliana</i> FIONA1. Overexpression of NbMETTL1 and NbMETTL2 caused a decrease of PPV accumulation. In sum, our results indicate that METTL homologues participate in plant antiviral responses.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"18 1","pages":"2214760"},"PeriodicalIF":2.8,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/58/4d/KPSB_18_2214760.PMC10202045.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9543788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The recent relationship between ultraviolet-B radiation and biotic resistance in plants: a novel non-chemical strategy for managing biotic stresses.","authors":"Gideon Sadikiel Mmbando","doi":"10.1080/15592324.2023.2191463","DOIUrl":"10.1080/15592324.2023.2191463","url":null,"abstract":"<p><p>Ultraviolet-B radiation (UVB; 280-315 nm) is a significant environmental factor that alters plant development, changes interactions between species, and reduces the prevalence of pests and diseases. While UVB radiation has negative effects on plant growth and performance at higher doses, at lower and ambient doses, UVB radiation acts as a non-chemical method for managing biotic stresses by having positive effects on disease resistance and genes that protect plants from pests. Understanding the recent relationship between UVB radiation and plants' biotic stresses is crucial for the development of crops that are resistant to UVB and biotic stresses. However, little is known about the recent interactions between UVB radiation and biotic stresses in plants. This review discusses the most recent connections between UVB radiation and biotic stresses in crops, including how UVB radiation affects a plant's resistance to disease and pests. The interaction of UVB radiation with pathogens and herbivores has been the subject of the most extensive research of these. This review also discusses additional potential strategies for conferring multiple UVB-biotic stress resistance in crop plants, such as controlling growth inhibition, miRNA 396 and 398 modulations, and MAP kinase. This study provides crucial knowledge and methods for scientists looking to develop multiple resistant crops that will improve global food security.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2191463"},"PeriodicalIF":2.9,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9131049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piao Wei, Yun Lv, Qiao Guang, Jie Han, Yifan Wang, Xuewen Wang, Li Song
{"title":"<i>ChIFNα</i> regulates adventitious root development in <i>Lotus japonicus</i> via an auxin-mediated pathway.","authors":"Piao Wei, Yun Lv, Qiao Guang, Jie Han, Yifan Wang, Xuewen Wang, Li Song","doi":"10.1080/15592324.2023.2218670","DOIUrl":"10.1080/15592324.2023.2218670","url":null,"abstract":"<p><p>Adventitious roots (ARs), developing from non-root tissue, play an important role in some plants. Here, the molecular mechanism of AR differentiation in <i>Lotus japonicus</i> L. (<i>L. japonicus</i>) with the transformed chicken interferon alpha gene (ChIFNα) encoding cytokine was studied. ChIFNα transgenic plants (TP) were identified by GUS staining, PCR, RT-PCR, and ELISA. Up to 0.175 μg/kg rChIFNα was detected in TP2 lines. Expressing rChIFNα promotes AR development by producing longer roots than controls. We found that the effect was enhanced with the auxin precursor IBA treatment in TP. IAA contents, POD, and PPO activities associated with auxin regulation were higher than wild type (WT) in TP and exogenous ChIFNα treatment plants. Transcriptome analysis revealed 48 auxin-related differentially expressed genes (DEGs) (FDR < 0.05), which expression levels were verified by RT-qPCR analysis. GO enrichment analysis of DEGs also highlighted the auxin pathway. Further analysis found that ChIFNα significantly enhanced auxin synthesis and signaling mainly with up-regulated genes of ALDH, and GH3. Our study reveals that ChIFNα can promote plant AR development by mediating auxin regulation. The findings help explore the role of ChIFNα cytokines and expand animal gene sources for the molecular breeding of growth regulation of forage plants.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"18 1","pages":"2218670"},"PeriodicalIF":2.8,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/84/50/KPSB_18_2218670.PMC10251782.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9629291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abida Kausar, Noreen Zahra, Hina Zahra, Muhammad Bilal Hafeez, Sara Zafer, Abida Shahzadi, Ali Raza, Ivica Djalovic, Pv Vara Prasad
{"title":"Alleviation of drought stress through foliar application of thiamine in two varieties of pea (<i>Pisum sativum</i> L.).","authors":"Abida Kausar, Noreen Zahra, Hina Zahra, Muhammad Bilal Hafeez, Sara Zafer, Abida Shahzadi, Ali Raza, Ivica Djalovic, Pv Vara Prasad","doi":"10.1080/15592324.2023.2186045","DOIUrl":"10.1080/15592324.2023.2186045","url":null,"abstract":"<p><p>Drought stress poorly impacts many morphological and physio-biochemical processes in plants. Pea (<i>Pisum sativum</i> L.) plants are highly nutritious crops destined for human consumption; however, their productivity is threatened under drought stress. Thiamine (vitamin B1) is well-known essential micronutrient, acting as a cofactor in key metabolic processes. Therefore, this study was designed to examine the protective effect of foliar application of thiamine (0, 250, and 500 ppm) on two varieties of pea plants under drought stress. Here, we conducted the pot experiment at the Government College Women University, Faisalabad, to investigate the physio-biochemical and morphological traits of two pea varieties (sarsabz and metior) grown under drought stress and thiamine treatment. Drought stress was applied to plants after germination period of 1 month. Results showed that root fresh and dry weight, shoot fresh and dry weight, number of pods, leaf area, total soluble sugars, total phenolics, total protein contents, catalase, peroxidase, and mineral ions were reduced against drought stress. However, the application of thiamine (both 250 and 500 ppm) overcome the stress and also enhances these parameters, and significantly increases the antioxidant activities (catalase and peroxidase). Moreover, the performance of sarsabz was better under control and drought stress conditions than metior variety. In conclusion, the exogenous application of thiamine enabled the plants to withstand drought stress conditions by regulating several physiological and biochemical mechanisms. In agriculture, it is a great latent to alleviate the antagonistic impact of drought stress on crops through the foliar application of thiamine.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"18 1","pages":"2186045"},"PeriodicalIF":2.9,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10277934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiangdi Li, Yating Chen, Rui Zhang, Bin Wu, Guiqing Xiao
{"title":"Expression identification of three OsWRKY genes in response to abiotic stress and hormone treatments in rice","authors":"Jiangdi Li, Yating Chen, Rui Zhang, Bin Wu, Guiqing Xiao","doi":"10.1080/15592324.2023.2292844","DOIUrl":"https://doi.org/10.1080/15592324.2023.2292844","url":null,"abstract":"WRKY transcription factors are critical for plant growth, development, and adaptation to stress. This paper focuses on the expression characteristic to abiotic stress and phytohormones of OsWRKY24,...","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"73A 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiru Zuo, Cheng Yang, Yana Yan, Guiyan Huang, Ruimin Li
{"title":"Systematic analysis of the thioredoxin gene family in Citrus sinensis: identification, phylogenetic analysis, and gene expression patterns","authors":"Xiru Zuo, Cheng Yang, Yana Yan, Guiyan Huang, Ruimin Li","doi":"10.1080/15592324.2023.2294426","DOIUrl":"https://doi.org/10.1080/15592324.2023.2294426","url":null,"abstract":"Thioredoxin (TRX) proteins play essential roles in reactive oxygen species scavenging in plants. We executed an exhaustive analysis of the TRX gene family in Citrus sinensis (CsTRXs), encompassing ...","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"20 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138743535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Tian, Jun-Cai Wang, Xin-Xiang Bai, Yan-Bing Yang, Lang Huang, Xiao-Feng Liao
{"title":"Symbiotic seed germination and seedling growth of mycorrhizal fungi in Paphiopedilum hirsutissimun (Lindl.Ex Hook.) Stein from China","authors":"Fan Tian, Jun-Cai Wang, Xin-Xiang Bai, Yan-Bing Yang, Lang Huang, Xiao-Feng Liao","doi":"10.1080/15592324.2023.2293405","DOIUrl":"https://doi.org/10.1080/15592324.2023.2293405","url":null,"abstract":"Similar to other orchid species, Paphiopedilum hirsutissimum (Lindl.ex Hook.) Stein, relies on nutrients provided by mycorrhizal fungus for seed germination and seedling development in the wild owi...","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"110 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138743130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dakalo Muthego, Sellwane J. Moloi, Adrian P. Brown, Tatenda Goche, Stephen Chivasa, Rudo Ngara
{"title":"Exogenous abscisic acid treatment regulates protein secretion in sorghum cell suspension cultures","authors":"Dakalo Muthego, Sellwane J. Moloi, Adrian P. Brown, Tatenda Goche, Stephen Chivasa, Rudo Ngara","doi":"10.1080/15592324.2023.2291618","DOIUrl":"https://doi.org/10.1080/15592324.2023.2291618","url":null,"abstract":"Drought stress adversely affects plant growth, often leading to total crop failure. Upon sensing soil water deficits, plants switch on biosynthesis of abscisic acid (ABA), a stress hormone for drou...","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"10 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138743426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gain-of-function of the cytokinin response activator ARR1 increases heat shock tolerance in <i>Arabidopsis thaliana</i>.","authors":"Sumudu Karunadasa, Jasmina Kurepa, Jan A Smalle","doi":"10.1080/15592324.2022.2073108","DOIUrl":"https://doi.org/10.1080/15592324.2022.2073108","url":null,"abstract":"<p><p>In addition to its well-established role in plant development, the hormone cytokinin regulates plant responses to biotic and abiotic stresses. It was previously shown that cytokinin signaling acts negatively upon drought and osmotic stress tolerance and that gain-of-function of the cytokinin response regulator ARR1 causes osmotic stress hypersensitivity. Here we show that increased ARR1 action increases tolerance to heat shock and that this is correlated with increased accumulation of the heat shock proteins Hsp17.6 and Hsp70. These results show that the heat shock tolerance of plants can be elevated by increasing the expression of a cytokinin response activator.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2073108"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10252333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}