ChIFNα通过生长素介导的途径调控枇杷不定根的发育。

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Piao Wei, Yun Lv, Qiao Guang, Jie Han, Yifan Wang, Xuewen Wang, Li Song
{"title":"ChIFNα通过生长素介导的途径调控枇杷不定根的发育。","authors":"Piao Wei, Yun Lv, Qiao Guang, Jie Han, Yifan Wang, Xuewen Wang, Li Song","doi":"10.1080/15592324.2023.2218670","DOIUrl":null,"url":null,"abstract":"<p><p>Adventitious roots (ARs), developing from non-root tissue, play an important role in some plants. Here, the molecular mechanism of AR differentiation in <i>Lotus japonicus</i> L. (<i>L. japonicus</i>) with the transformed chicken interferon alpha gene (ChIFNα) encoding cytokine was studied. ChIFNα transgenic plants (TP) were identified by GUS staining, PCR, RT-PCR, and ELISA. Up to 0.175 μg/kg rChIFNα was detected in TP2 lines. Expressing rChIFNα promotes AR development by producing longer roots than controls. We found that the effect was enhanced with the auxin precursor IBA treatment in TP. IAA contents, POD, and PPO activities associated with auxin regulation were higher than wild type (WT) in TP and exogenous ChIFNα treatment plants. Transcriptome analysis revealed 48 auxin-related differentially expressed genes (DEGs) (FDR < 0.05), which expression levels were verified by RT-qPCR analysis. GO enrichment analysis of DEGs also highlighted the auxin pathway. Further analysis found that ChIFNα significantly enhanced auxin synthesis and signaling mainly with up-regulated genes of ALDH, and GH3. Our study reveals that ChIFNα can promote plant AR development by mediating auxin regulation. The findings help explore the role of ChIFNα cytokines and expand animal gene sources for the molecular breeding of growth regulation of forage plants.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/84/50/KPSB_18_2218670.PMC10251782.pdf","citationCount":"0","resultStr":"{\"title\":\"<i>ChIFNα</i> regulates adventitious root development in <i>Lotus japonicus</i> via an auxin-mediated pathway.\",\"authors\":\"Piao Wei, Yun Lv, Qiao Guang, Jie Han, Yifan Wang, Xuewen Wang, Li Song\",\"doi\":\"10.1080/15592324.2023.2218670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adventitious roots (ARs), developing from non-root tissue, play an important role in some plants. Here, the molecular mechanism of AR differentiation in <i>Lotus japonicus</i> L. (<i>L. japonicus</i>) with the transformed chicken interferon alpha gene (ChIFNα) encoding cytokine was studied. ChIFNα transgenic plants (TP) were identified by GUS staining, PCR, RT-PCR, and ELISA. Up to 0.175 μg/kg rChIFNα was detected in TP2 lines. Expressing rChIFNα promotes AR development by producing longer roots than controls. We found that the effect was enhanced with the auxin precursor IBA treatment in TP. IAA contents, POD, and PPO activities associated with auxin regulation were higher than wild type (WT) in TP and exogenous ChIFNα treatment plants. Transcriptome analysis revealed 48 auxin-related differentially expressed genes (DEGs) (FDR < 0.05), which expression levels were verified by RT-qPCR analysis. GO enrichment analysis of DEGs also highlighted the auxin pathway. Further analysis found that ChIFNα significantly enhanced auxin synthesis and signaling mainly with up-regulated genes of ALDH, and GH3. Our study reveals that ChIFNα can promote plant AR development by mediating auxin regulation. The findings help explore the role of ChIFNα cytokines and expand animal gene sources for the molecular breeding of growth regulation of forage plants.</p>\",\"PeriodicalId\":20232,\"journal\":{\"name\":\"Plant Signaling & Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/84/50/KPSB_18_2218670.PMC10251782.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Signaling & Behavior\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2023.2218670\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2023.2218670","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

不定根是由非根组织发育而来,在一些植物中起着重要作用。本文研究了编码细胞因子的转化鸡干扰素α基因(ChIFNα)诱导日本莲藕AR分化的分子机制。通过GUS染色、PCR、RT-PCR和ELISA鉴定ChIFNα转基因植物(TP)。高达0.175 μg/kg rChIFNα。表达rChIFNα通过产生比对照更长的根来促进AR的发育。我们发现,在TP中,生长素前体IBA处理的效果增强。在TP和外源ChIFNα处理植物中,与生长素调节相关的IAA含量、POD和PPO活性高于野生型(WT)。转录组分析显示48个生长素相关差异表达基因(DEGs)(FDR<0.05),RT-qPCR分析验证了这些基因的表达水平。二甘醇的GO富集分析也突出了生长素途径。进一步的分析发现,ChIFNα主要通过上调ALDH和GH3基因来显著增强生长素的合成和信号传导。我们的研究表明,ChIFNα可以通过介导生长素调节来促进植物AR的发育。这些发现有助于探索ChIFNα细胞因子的作用,并为饲料植物生长调控的分子育种扩展动物基因来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

<i>ChIFNα</i> regulates adventitious root development in <i>Lotus japonicus</i> via an auxin-mediated pathway.

<i>ChIFNα</i> regulates adventitious root development in <i>Lotus japonicus</i> via an auxin-mediated pathway.

<i>ChIFNα</i> regulates adventitious root development in <i>Lotus japonicus</i> via an auxin-mediated pathway.

ChIFNα regulates adventitious root development in Lotus japonicus via an auxin-mediated pathway.

Adventitious roots (ARs), developing from non-root tissue, play an important role in some plants. Here, the molecular mechanism of AR differentiation in Lotus japonicus L. (L. japonicus) with the transformed chicken interferon alpha gene (ChIFNα) encoding cytokine was studied. ChIFNα transgenic plants (TP) were identified by GUS staining, PCR, RT-PCR, and ELISA. Up to 0.175 μg/kg rChIFNα was detected in TP2 lines. Expressing rChIFNα promotes AR development by producing longer roots than controls. We found that the effect was enhanced with the auxin precursor IBA treatment in TP. IAA contents, POD, and PPO activities associated with auxin regulation were higher than wild type (WT) in TP and exogenous ChIFNα treatment plants. Transcriptome analysis revealed 48 auxin-related differentially expressed genes (DEGs) (FDR < 0.05), which expression levels were verified by RT-qPCR analysis. GO enrichment analysis of DEGs also highlighted the auxin pathway. Further analysis found that ChIFNα significantly enhanced auxin synthesis and signaling mainly with up-regulated genes of ALDH, and GH3. Our study reveals that ChIFNα can promote plant AR development by mediating auxin regulation. The findings help explore the role of ChIFNα cytokines and expand animal gene sources for the molecular breeding of growth regulation of forage plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Signaling & Behavior
Plant Signaling & Behavior Agricultural and Biological Sciences-Plant Science
CiteScore
6.00
自引率
3.40%
发文量
111
期刊介绍: Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信