Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae144
Yanzhi Yang, Lei Xu, Chen Hao, Miaomiao Wan, Yihan Tao, Yan Zhuang, Yanning Su, Lei Li
{"title":"The microRNA408-plantacyanin module balances plant growth and drought resistance by regulating reactive oxygen species homeostasis in guard cells.","authors":"Yanzhi Yang, Lei Xu, Chen Hao, Miaomiao Wan, Yihan Tao, Yan Zhuang, Yanning Su, Lei Li","doi":"10.1093/plcell/koae144","DOIUrl":"10.1093/plcell/koae144","url":null,"abstract":"<p><p>The conserved microRNA (miRNA) miR408 enhances photosynthesis and compromises stress tolerance in multiple plants, but the cellular mechanism underlying its function remains largely unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), the transcript encoding the blue copper protein PLANTACYANIN (PCY) is the primary target for miR408 in vegetative tissues. PCY is preferentially expressed in the guard cells, and PCY is associated with the endomembrane surrounding individual chloroplasts. We found that the MIR408 promoter is suppressed by multiple abscisic acid (ABA)-responsive transcription factors, thus allowing PCY to accumulate under stress conditions. Genetic analysis revealed that PCY elevates reactive oxygen species (ROS) levels in the guard cells, promotes stomatal closure, reduces photosynthetic gas exchange, and enhances drought resistance. Moreover, the miR408-PCY module is sufficient to rescue the growth and drought tolerance phenotypes caused by gain- and loss-of-function of MYB44, an established positive regulator of ABA responses, indicating that the miR408-PCY module relays ABA signaling for regulating ROS homeostasis and drought resistance. These results demonstrate that miR408 regulates stomatal movement to balance growth and drought resistance, providing a mechanistic understanding of why miR408 is selected during land plant evolution and insights into the long-pursued quest of breeding drought-tolerant and high-yielding crops.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4338-4355"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MPK4-mediated phosphorylation of PHYTOCHROME INTERACTING FACTOR4 controls thermosensing by regulating histone variant H2A.Z deposition.","authors":"Neetu Verma, Dhanraj Singh, Lavanya Mittal, Gopal Banerjee, Stanzin Noryang, Alok Krishna Sinha","doi":"10.1093/plcell/koae223","DOIUrl":"10.1093/plcell/koae223","url":null,"abstract":"<p><p>Plants can perceive a slight upsurge in ambient temperature and respond by undergoing morphological changes, such as elongated hypocotyls and early flowering. The dynamic functioning of PHYTOCHROME INTERACTING FACTOR4 (PIF4) in thermomorphogenesis is well established, although the complete regulatory pathway involved in thermosensing remains elusive. We establish that an increase in temperature from 22 to 28 °C induces upregulation and activation of MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) in Arabidopsis (Arabidopsis thaliana), subsequently leading to the phosphorylation of PIF4. Phosphorylated PIF4 represses the expression of ACTIN-RELATED PROTEIN 6 (ARP6), which is required for mediating the deposition of histone variant H2A.Z at its target loci. Furthermore, we demonstrate that variations in ARP6 expression in PIF4 phosphor-null and phosphor-mimetic seedlings affect hypocotyl growth at 22 and 28 °C by modulating the regulation of ARP6-mediated H2A.Z deposition at the loci of genes involved in elongating hypocotyl cells. Interestingly, the expression of MPK4 is also controlled by H2A.Z deposition in a temperature-dependent manner. Taken together, these findings highlight the regulatory mechanism of thermosensing by which MPK4-mediated phosphorylation of PIF4 affects ARP6-mediated H2A.Z deposition at the genes involved in hypocotyl cell elongation.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4535-4556"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conserved cis-elements enable NODULES WITH ACTIVATED DEFENSE1 regulation by NODULE INCEPTION during nodulation.","authors":"Haixiang Yu, Aifang Xiao, Zhongmin Zou, Qiujin Wu, Lin Chen, Dandan Zhang, Yuzhang Sun, Chao Wang, Jianbo Cao, Hui Zhu, Zhongming Zhang, Yangrong Cao","doi":"10.1093/plcell/koae229","DOIUrl":"10.1093/plcell/koae229","url":null,"abstract":"<p><p>Symbiotic nitrogen fixation within nitrogen-fixing clade (NFC) plants is thought to have arisen from a single gain followed by massive losses in the genomes of ancestral non-nodulating plants. However, molecular evidence supporting this model is limited. Here, we confirm through bioinformatic analysis that NODULES WITH ACTIVATED DEFENSE1 (NAD1) is present only in NFC plants and is thus an NFC-specific gene. Moreover, NAD1 was specifically expressed in nodules. We identified three conserved nodulation-associated cis-regulatory elements (NACE1-3) in the promoter of LjNAD1 from Lotus japonicus that are required for its nodule specific expression. A survey of NFC plants revealed that NACE1 and NACE2 are specific to the Fabales and Papilionoideae, respectively, while NACE3 is present in all NFC plants. Moreover, we found that nodule inception (NIN) directly binds to all three NACEs to activate NAD1 expression. Mutation of L. japonicus LjNAD1 resulted in the formation of abnormal symbiosomes with enlarged symbiosome space and frequent breakdown of bacteroids in nodules, resembling phenotypes reported for Medicago truncatula Mtnad1 and Mtnin mutants. These data point to NIN-NAD1 as an important module regulating rhizobial accommodation in nodules. The regulation of NAD1 by NIN in the NFC ancestor represent an important evolutionary adaptation for nodulation.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4622-4636"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae228
Weiyuan Song, Yang Xie, Bin Liu, Yuxiang Huang, Zhihua Cheng, Zilong Zhao, Di Tian, Yan Geng, Jingyu Guo, Chuang Li, Daixi She, Yanting Zhong, Min Li, Liu Liu, Jiacai Chen, Chengzhen Sun, Xuejun Zhang, Zhaoyang Zhou, Jinsheng Lai, Ming Xin, Liying Yan, Jianyu Zhao, Xiaolan Zhang
{"title":"Single nucleotide polymorphisms in SEPALLATA 2 underlie fruit length variation in cucurbits.","authors":"Weiyuan Song, Yang Xie, Bin Liu, Yuxiang Huang, Zhihua Cheng, Zilong Zhao, Di Tian, Yan Geng, Jingyu Guo, Chuang Li, Daixi She, Yanting Zhong, Min Li, Liu Liu, Jiacai Chen, Chengzhen Sun, Xuejun Zhang, Zhaoyang Zhou, Jinsheng Lai, Ming Xin, Liying Yan, Jianyu Zhao, Xiaolan Zhang","doi":"10.1093/plcell/koae228","DOIUrl":"10.1093/plcell/koae228","url":null,"abstract":"<p><p>Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4607-4621"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae234
Nitin Uttam Kamble
{"title":"Decoding the role of flavonoids in ROS management during heat stress in tomato pollen.","authors":"Nitin Uttam Kamble","doi":"10.1093/plcell/koae234","DOIUrl":"10.1093/plcell/koae234","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4285-4286"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae201
Colleen Drapek, Annalisa Rizza, Nadiatul A Mohd-Radzman, Katharina Schiessl, Fabio Dos Santos Barbosa, Jiangqi Wen, Giles E D Oldroyd, Alexander M Jones
{"title":"Gibberellin dynamics governing nodulation revealed using GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula lateral organs.","authors":"Colleen Drapek, Annalisa Rizza, Nadiatul A Mohd-Radzman, Katharina Schiessl, Fabio Dos Santos Barbosa, Jiangqi Wen, Giles E D Oldroyd, Alexander M Jones","doi":"10.1093/plcell/koae201","DOIUrl":"10.1093/plcell/koae201","url":null,"abstract":"<p><p>During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4442-4456"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae082
Josef Komenda, Roman Sobotka, Peter J Nixon
{"title":"The biogenesis and maintenance of PSII: Recent advances and current challenges.","authors":"Josef Komenda, Roman Sobotka, Peter J Nixon","doi":"10.1093/plcell/koae082","DOIUrl":"10.1093/plcell/koae082","url":null,"abstract":"<p><p>The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"3997-4013"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae029
Jiyu Xin, Zhenzhen Min, Lu Yu, Xinyi Yuan, Aokun Liu, Wenping Wu, Xin Zhang, Huimin He, Jingyi Wu, Yueyong Xin, Robert E Blankenship, Changlin Tian, Xiaoling Xu
{"title":"Cryo-EM structure of HQNO-bound alternative complex III from the anoxygenic phototrophic bacterium Chloroflexus aurantiacus.","authors":"Jiyu Xin, Zhenzhen Min, Lu Yu, Xinyi Yuan, Aokun Liu, Wenping Wu, Xin Zhang, Huimin He, Jingyi Wu, Yueyong Xin, Robert E Blankenship, Changlin Tian, Xiaoling Xu","doi":"10.1093/plcell/koae029","DOIUrl":"10.1093/plcell/koae029","url":null,"abstract":"<p><p>Alternative complex III (ACIII) couples quinol oxidation and electron acceptor reduction with potential transmembrane proton translocation. It is compositionally and structurally different from the cytochrome bc1/b6f complexes but functionally replaces these enzymes in the photosynthetic and/or respiratory electron transport chains (ETCs) of many bacteria. However, the true compositions and architectures of ACIIIs remain unclear, as do their structural and functional relevance in mediating the ETCs. We here determined cryogenic electron microscopy structures of photosynthetic ACIII isolated from Chloroflexus aurantiacus (CaACIIIp), in apo-form and in complexed form bound to a menadiol analog 2-heptyl-4-hydroxyquinoline-N-oxide. Besides 6 canonical subunits (ActABCDEF), the structures revealed conformations of 2 previously unresolved subunits, ActG and I, which contributed to the complex stability. We also elucidated the structural basis of menaquinol oxidation and subsequent electron transfer along the [3Fe-4S]-6 hemes wire to its periplasmic electron acceptors, using electron paramagnetic resonance, spectroelectrochemistry, enzymatic analyses, and molecular dynamics simulations. A unique insertion loop in ActE was shown to function in determining the binding specificity of CaACIIIp for downstream electron acceptors. This study broadens our understanding of the structural diversity and molecular evolution of ACIIIs, enabling further investigation of the (mena)quinol oxidoreductases-evolved coupling mechanism in bacterial energy conservation.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4212-4233"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139651403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae214
Nicolas M Doll
{"title":"New insights into alternative splicing in rice using population-level transcriptomics.","authors":"Nicolas M Doll","doi":"10.1093/plcell/koae214","DOIUrl":"10.1093/plcell/koae214","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4276-4277"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae216
Min-Yao Jhu, Thomas B Irving
{"title":"Seeing hormones in action: High-resolution gibberellin dynamics in nodules.","authors":"Min-Yao Jhu, Thomas B Irving","doi":"10.1093/plcell/koae216","DOIUrl":"10.1093/plcell/koae216","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4280-4282"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}