Physics Letters BPub Date : 2025-02-01DOI: 10.1016/j.physletb.2025.139287
X.H. Mo
{"title":"Generic symmetry analysis of charmonium decay","authors":"X.H. Mo","doi":"10.1016/j.physletb.2025.139287","DOIUrl":"10.1016/j.physletb.2025.139287","url":null,"abstract":"<div><div>For charmonium's decaying to the final states involving merely light quarks, in light of <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> flavor symmetry, a systematic parametrization scheme is established, which involving binary decays, ternary decays and radiative decays.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139287"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics Letters BPub Date : 2025-02-01DOI: 10.1016/j.physletb.2024.139228
Chengjia Chen , Fengkai Ge , Qiyuan Pan , Jiliang Jing
{"title":"Scalar perturbation around rotating Einstein-bumblebee BTZ black holes under Robin boundary conditions: Quasinormal modes and superradiance","authors":"Chengjia Chen , Fengkai Ge , Qiyuan Pan , Jiliang Jing","doi":"10.1016/j.physletb.2024.139228","DOIUrl":"10.1016/j.physletb.2024.139228","url":null,"abstract":"<div><div>We investigate the scalar perturbation around a rotating Einstein-bumblebee BTZ black hole under Robin boundary conditions. It is shown that the relationship curves between real and imaginary parts of scalar quasinormal modes in the complex plane depend on the black hole spin parameter <em>j</em> and the Lorentz symmetry breaking parameter <em>s</em>. The shapes of these curves are similar for different <em>s</em>, but heavily depend on the spin parameter <em>j</em>. With the increase of <em>j</em>, the symmetry of these curves with respect to the imaginary axis in the complex plane is gradually broken for different <em>s</em>. We also discuss the energy and angular momentum fluxes across the black hole horizon under Robin boundary conditions, and probe the changes of the threshold parameter related to the superradiance in Robin boundary conditions with the symmetry breaking parameter and the spin parameter. The combination of the Lorentz symmetry violation and the Robin boundary condition provides richer physics in the scalar perturbation around a rotating Einstein-bumblebee BTZ black hole.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139228"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics Letters BPub Date : 2025-02-01DOI: 10.1016/j.physletb.2024.139238
Constantino Tsallis , Henrik Jeldtoft Jensen
{"title":"Extensive composable entropy for the analysis of cosmological data","authors":"Constantino Tsallis , Henrik Jeldtoft Jensen","doi":"10.1016/j.physletb.2024.139238","DOIUrl":"10.1016/j.physletb.2024.139238","url":null,"abstract":"<div><div>In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>∝</mo><mi>A</mi><mo>/</mo><msubsup><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> (<em>A</em>≡ area; <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>≡</mo></math></span> Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>N</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></msup><mspace></mspace><mspace></mspace><mo>(</mo><mi>μ</mi><mo>></mo><mn>1</mn><mo>;</mo><mi>γ</mi><mo>></mo><mn>0</mn><mo>)</mo></math></span>, <em>W</em> and <em>N</em> respectively being the total number of microscopic possibilities and the number of components; <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span> corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> asymptotic behavior, we make use of the group-theoretic entropic functional <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>γ</mi></mrow></msub><mo>=</mo><mi>k</mi><msup><mrow><mo>[</mo><mfrac><mrow><mi>ln</mi><mo></mo><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msubsup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>α</mi></mrow></msubsup></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></mfrac><mo>]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac></mrow></msup><mspace></mspace><mo>(</mo><mi>α</mi><mo>∈</mo><mi>R</mi><mo>;</mo><mspace></mspace><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>G</mi></mrow></msub><mo>≡</mo><mo>−</mo><mi>k</mi><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>ln</mi><mo></mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, first derived by P. Tempesta in Chaos <strong>30</strong>,123119, (2020). This functional is <em>extensive</em> (as required by thermodynamics) and <em>composable</em>, <span><math><mo>∀</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>)</mo></math></span>. Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probabil","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139238"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics Letters BPub Date : 2025-02-01DOI: 10.1016/j.physletb.2024.139236
Everton M.C. Abreu
{"title":"Surface gravity analysis in Gauss-Bonnet and Barrow black holes","authors":"Everton M.C. Abreu","doi":"10.1016/j.physletb.2024.139236","DOIUrl":"10.1016/j.physletb.2024.139236","url":null,"abstract":"<div><div>We have different definitions of the surface gravity (SG) of a horizon since we can say we have distinct classifications of horizons. The SG has an underlying role in the laws of black hole (BH) thermodynamics, being constant in the event horizon. The SG also acts in the emission of Hawking radiation being connected to its temperature. Concerning this last issue, the quantum features that permeate Hawking radiation provide us a direct indication that a BH has its temperature directly connected to its area and that its entropy is proportional to the horizon area. In this work we analyzed some aspects of event horizons. Analyzing how the SG can be classically defined for stationary BHs together with the radial pressure computation. So, the SG, through the laws of BH mechanics is connected to the real thermodynamical temperature of a thermal spectrum. We discussed these subjects in two different BHs scenarios, the five dimensional Gauss-Bonnet one and the recently developed Barrow entropy construction. We discussed how the quantum fluctuations affect these both quantities.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139236"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accurate calculation of low energy scattering phase shifts of charged particles in a harmonic oscillator trap","authors":"Mirko Bagnarol , Nir Barnea , Matúš Rojik , Martin Schäfer","doi":"10.1016/j.physletb.2024.139230","DOIUrl":"10.1016/j.physletb.2024.139230","url":null,"abstract":"<div><div>Considering the elastic scattering of two charged particles, we present two methods for numerically solving the generalized Coulomb-corrected BERW formula with high accuracy across the entire energy spectrum. We illustrate these methods using <span><math><mi>p</mi><mo>−</mo><mi>α</mi></math></span> scattering, employing a phenomenological <span><math><mi>p</mi><mo>−</mo><mi>α</mi></math></span> short-range interaction. Our results reproduce the phase shifts computed with the Numerov method for all <span><math><mi>l</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>l</mi><mo>=</mo><mn>1</mn></math></span> channels. We also provide full access to the Python script used to obtain these results, which can be readily applied to a wide range of core-fragment scattering problems in nuclear and atomic physics.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139230"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics Letters BPub Date : 2025-02-01DOI: 10.1016/j.physletb.2024.139088
{"title":"Girth and groomed radius of jets recoiling against isolated photons in lead-lead and proton-proton collisions at sNN=5.02 TeV","authors":"","doi":"10.1016/j.physletb.2024.139088","DOIUrl":"10.1016/j.physletb.2024.139088","url":null,"abstract":"<div><div>This Letter presents the first measurements of the groomed jet radius <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and the jet girth <em>g</em> in events with an isolated photon recoiling against a jet in lead-lead (PbPb) and proton-proton (pp) collisions at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The observables <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and <em>g</em> provide a quantitative measure of how narrow or broad a jet is. The analysis uses PbPb and pp data samples with integrated luminosities of <span><math><mn>1.7</mn><msup><mrow><mtext> nb</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> and <span><math><mn>301</mn><msup><mrow><mtext> pb</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, respectively, collected with the CMS experiment in 2018 and 2017. Events are required to have a photon with transverse momentum <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mo>></mo><mn>100</mn><mtext> GeV</mtext></math></span> and at least one jet back-to-back in azimuth with respect to the photon and with transverse momentum <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow><mrow><mtext>jet</mtext></mrow></msubsup></math></span> such that <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow><mrow><mtext>jet</mtext></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mo>></mo><mn>0.4</mn></math></span>. The measured <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and <em>g</em> distributions are unfolded to the particle level, which facilitates the comparison between the PbPb and pp results and with theoretical predictions. It is found that jets with <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow><mrow><mtext>jet</mtext></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mo>></mo><mn>0.8</mn></math></span>, i.e., those that closely balance the photon <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math></span>, are narrower in PbPb than in pp collisions. Relaxing the selection to include jets with <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow><mrow><mtext>jet</mtext></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mo>></mo><mn>0.4</mn></math></span> reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference. This shows that selection bias effects associated with jet energy loss play an important role in the interpretation of jet substructure measurements.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139088"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics Letters BPub Date : 2025-02-01DOI: 10.1016/j.physletb.2025.139248
Yu Qiang , Junchen Pei , Kyle Godbey
{"title":"Quantum entanglement in nuclear fission","authors":"Yu Qiang , Junchen Pei , Kyle Godbey","doi":"10.1016/j.physletb.2025.139248","DOIUrl":"10.1016/j.physletb.2025.139248","url":null,"abstract":"<div><div>Nuclear fission presents a unique example of quantum entanglement in strongly interacting many-body systems. A heavy nucleus can split into hundreds of combinations of two complementary fragments in the fission process. The entanglement of fragment wave functions is persistent even after separation and impacts the partition of particles and energies between fragments. Based on microscopic dynamical calculations of the fission of <sup>240</sup>Pu, this work finds that dynamical quantum entanglement is indispensable in the appearance of sawtooth distributions of average excitation energies of fragments and thus neutron multiplicities, but not in average neutron excess of fragments. Both sawtooth slopes from particle-number projections are found to be steep – a feature which can be alleviated by random fluctuations. The persistent entanglement is mainly due to non-adiabatic dynamics since the final splitting is so fast that the non-localization of wave functions is kept during the separation. These findings may impact the understanding of quantum entanglement more broadly in mesoscopic systems.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139248"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics Letters BPub Date : 2025-02-01DOI: 10.1016/j.physletb.2025.139255
Haru-Tada Sato
{"title":"Curtright-Zachos supersymmetric deformations of the Virasoro algebra in quantum superspace and Bloch electron systems","authors":"Haru-Tada Sato","doi":"10.1016/j.physletb.2025.139255","DOIUrl":"10.1016/j.physletb.2025.139255","url":null,"abstract":"<div><div>We introduce supersymmetric extensions of the Hom-Lie deformation of the Virasoro algebra, as realized in the GL(1,1) quantum superspace, for Bloch electron systems under Zeeman effects. The construction is achieved by defining generators through magnetic translations and spin matrix bases, specifically for the <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>2</mn></math></span> supersymmetric deformed algebras. This approach reveals a structural parallel between the deformed algebra in quantum superspace and its manifestation in Bloch electron systems.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139255"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics Letters BPub Date : 2025-02-01DOI: 10.1016/j.physletb.2024.139233
{"title":"Corrigendum to “Search for a common baryon source in high-multiplicity pp collisions at the LHC” [Phys. Lett. B 811 (2020) 135849]","authors":"","doi":"10.1016/j.physletb.2024.139233","DOIUrl":"10.1016/j.physletb.2024.139233","url":null,"abstract":"","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139233"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics Letters BPub Date : 2025-02-01DOI: 10.1016/j.physletb.2024.139240
Ya-Xiong Wang , Hai-Jiang Tian , Yin-Long Yang , Tao Zhong , Hai-Bing Fu
{"title":"Prospective analysis of CKM element |Vcd| and D+-meson decay constant from leptonic decays D+ → ℓ+ν","authors":"Ya-Xiong Wang , Hai-Jiang Tian , Yin-Long Yang , Tao Zhong , Hai-Bing Fu","doi":"10.1016/j.physletb.2024.139240","DOIUrl":"10.1016/j.physletb.2024.139240","url":null,"abstract":"<div><div>The leptonic decay of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson has attracted significant interest due to its unique characteristics. In this paper, we carry out an investigation into the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson leptonic decays <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> with <span><math><mi>ℓ</mi><mo>=</mo><mo>(</mo><mi>e</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span> by employing the QCD sum rules approach. In which the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson decay constant <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span> is an important input parameter in the process. To enhance the accuracy of our calculations for <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span>, we consider the quark propagator and vertex up to dimension-six within the framework of background field theory. Consequently, we obtain the QCD sum rule expression for <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span> up to dimension-six condensates, yielding <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub><mo>=</mo><mn>203.0</mn><mo>±</mo><mn>1.5</mn><mspace></mspace><mrow><mi>MeV</mi></mrow></math></span>. Our result is in good agreement with BESIII measurements and theoretical predictions. We also present the integrated decay widths for the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson in three channels <span><math><mi>Γ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>5.263</mn></mrow><mrow><mo>−</mo><mn>0.075</mn></mrow><mrow><mo>+</mo><mn>0.076</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>21</mn></mrow></msup><mspace></mspace><mrow><mi>GeV</mi></mrow></math></span>, <span><math><mi>Γ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>2.236</mn></mrow><mrow><mo>−</mo><mn>0.032</mn></mrow><mrow><mo>+</mo><mn>0.032</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>16</m","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139240"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}